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Key Contributions

« Radio fingerprinting is crucial for wireless device identification In « The study used a USRP 2922 testbed and VERT2450 Antenna with two transmitters and a receiver
various applications. to collect radio frequency data. The data was obtained through Wi-Fi transmissions with BPSK 1/2 1. Direct use of complex numbers: Rather than converting complex
modulation at a center frequency of 2.45 GHz, a 2 MHz bandwidth, and a 2 MHz sampling rate. numbers from two distinct arrays of floats, we passed complex
* It works by analyzing hardware imperfections in RF signals to create Open-source GNU Radio code was used for data collection. numbers directly into the model
unique device "fingerprints."
» The receiver was positioned one foot away from the transmitter, and both remained static. Data 2. Collection of a comprehensive dataset: We gathered a
* Previous approaches using machine learning have shown poor were collected for two days in a lab environment with three transmissions per day, each separated comprehensive dataset for Wi-Fi data at various locations
performance in adversarial environments, particularly in cross-day by one minute and a 15-second break. including before and after the Fast Fourier Transform (|:|:-|-):
SCENArios. . . . equalized, and with metadata.
« 1/Q samples were taken at four points on the receiver side to capture the data: before FFT
 Our proposed solution is a deep-learning approach that utilizes (frequency domain), after FFT (time domain), after equalizer (equalized), and metadata. Each 3. Investigation of various complex activation functions and network
complex-valued activation functions to capture phase information in transmitter broadcasted signals that were recorded for one minute, resulting in approximately ' architectures: Deep neural network architectures with various
addition to amplitude. 1,667 1/Q traces collected for each transmission from each transmitter. amounts of | z;lyers were investigated.
e \We also exp]ore different pre_processing techniques and hyperparameter  The ex-periment'.S training and teSting phases used |/Q Fra?es collected on Day 1 and Day 2, 4 Extensive hyperparameter tuning: To enhance the efﬁcacy of the
tuning to improve our approach's robustness to different scenarios. respectively, while Day 3 was used to evaluate the classifier's performance. To gather data, 5,000 model, hyperparameter tuning was carried out by adjusting

1/Q traces were extracted from each transmitter. variables like stride, length, and window size.

« The collected 1/Q traces were randomly split into three sets for training, validation, and testing
Methodok)gy purposes, with 64%, 16%, and 20% of the traces being allocated to each set, respectively, for each
experiment conducted. Future Works
« A complex deep-learning method for radio signal analysis was B
proposed in order to improve device Iidentification accuracy in Pre“mmary Results 1. We plan to collect data from a greater number of USRP devices,

adversarial environments. Including both static and moving devices to capture a wider range
of environmental data.
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« Experiments were carried out to evaluate deep neural network models b el
- - - - - | —@— crelu - g =
with various complex activation functions, such as modReLU, CReLU, "7 o ey 2. We aim to enhance our approach by utilizing more advanced
After FFT (frequency domain) L =288 and w =64 —e— modrelu_cross . . . . .
and ZRelLU. 05501 o~ crelu_cross techniques, such as the triplet network for training and testing, as
os25{ T / well as the Generative adversarial network model.

Accuracy

« To enhance robustness, we Investigated various pre-processing Cross-day
techniques and hyperparameter tuning on various parameters such as

stride (s), trace length (L), and window size (w). The classification ] \ References
model's performance was evaluated using the accuracy rate as the S=05L 0.450 -

performance measure. The number of layers in the neural network
model was also changed to improve model performance.
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 The performance metrics were used to compare the efficacy of deep

: - . - Figure 2: After FFT (f domain) L = 288 and
neural network models with various complex activation functions and igure 2: After FFT (frequency domain) andw

pre-processing parameters. The outcomes were examined in order to o Same-g?r/nZrl]gxc;gtsis{;;?gnagsggﬁi%ZOrdlﬁerent 2. Cole, Elizabeth K., et al. "Analysis of deep complex-valued
identify the best model for device identification in adversarial convolutional neural networks for MRI reconstruction.” arxXiv
environments. preprint arXiv:2004.01738 (2020).
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Figure 3: After FFT (frequency domain) s =288 and L =
288, same-day and cross-day accuracy for different
complex activation functions

Figure 1: Testbed setup using USRP 2922 platform with 2 transmitters and
1 receiver, all running GNU Radio.
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