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Abstract

The ferroelectric van der Waals CuInP2S6 (CIPS) possesses

intriguing quadruple-well states and negative piezoelectricity.

Its technological implementation has been impeded by the

relatively low Curie temperature (bulk TC~42 °C) and the

lack of precise domain control. Here we show that enhanced

ferroelectricity and piezoelectricity as well as controlled

domain formation can be achieved in thin CIPS flakes by

interfacing with ferroelectric PbZr0.2Ti0.8O3 (PZT) films.

Piezoresponse force microscopy (PFM) studies show that

the polar domains in CIPS fully conform to those of

underlying PZT as the flake thickness is reduced below 25

nm. The enhanced polar alignment is accompanied by a

sign change in the piezoelectric coefficient d33. In situ PFM

studies reveal an enhanced TC of ~200 ºC in thin CIPS.

Density functional theory modeling of CIPS/PbTiO3 reveals

the critical role of interface-modulated lattice distortion,

which can facilitate polar alignment in CIPS. Monte Carlo

simulations show that this effect also quantitatively accounts

for the enhanced TC in CIPS. Our study provides a new

material strategy for engineering the polar properties of

ultrathin CIPS for developing nanoelectronic, mechanical,

and energy applications.

Motivation

➢ Ferroelectricity and piezoelectricity

▪ Large bandgap: ~2.9 eV 

▪ Out-of-plane polarization: ~4 mC/cm2

▪ Negative piezoelectric coefficient d33

➢ Potential Applications
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➢ Challenges

➢ Diffusive, rough domain walls in domain writing due to 

high Cu ion mobility
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Interfacing CIPS with a ferroelectric layer

Technical Approach Analysis of 𝒅𝟑𝟑
𝐂𝐈𝐏𝐒
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Conductive 

probe

▪ Write domain patterns on PZT using 

conductive probe AFM 

▪ Mechanical exfoliation of CIPS flakes

▪ Dry transfer of 6-300 nm flakes on PZT 

with prepatterned domain structure

▪ Control studies: CIPS flakes prepared 

on doped Si and Au
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➢ Domain Formation in 14 nm CIPS on Different Substrates

➢ CIPS on Pup domain of 

PZT: uniform PFM phase 

consistent with that of PZT

175 °C

DFT Modeling of CIPS/PbTiO3 Interface
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Enhanced TC for CIPS on PZT

Conclusion
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5 µm

Evolution of domain structure in 

CIPS with flake thickness

▪ 13 nm: Domain pattern conforms to 

that of underlying PZT

▪ 55 nm: Randomly distributed Pup and 

Pdown domains start to emerge

▪ 70 nm and thicker: Predominantly 

Pup, regardless of the polarizations of 

underlying PZT

➢ The synergy between CIPS and PZT 

decays with CIPS thickness, 

suggesting that it is an interfacial 

effect

Negative 

Capacitance FET

Our goal: Develop a strategy to achieve controlled 

domain formation and enhanced TC in CIPS

Off-resonance PFM

➢ Quantifying 𝒅𝟑𝟑
𝐂𝐈𝐏𝐒 (e.g., 14 nm CIPS)

Voltage across CIPS/PZT

➢ Thickness Dependence of 𝒅𝟑𝟑
𝐂𝐈𝐏𝐒

▪ Suppressed 𝑑33
CIPS in thin 

CIPS on Si and Au

▪ 𝑑33
CIPS for CIPS on PZT:

Ⅰ: negative 𝑑33
CIPS

Ⅱ: transition region

Ⅲ: positive 𝑑33
CIPS

▪ Enhanced 𝑑33
CIPS in thin 

CIPS on PZT

➢ Mechanism for the sign change in 𝒅𝟑𝟑
𝐂𝐈𝐏𝐒

▪ Domain formation in thin CIPS (< 25 nm) conforms to that 

in the underlying PZT 

▪ Thin CIPS on PZT exhibits enhanced 𝑑33
CIPS accompanied 

with a sign change, and TC is enhanced by 55%

▪ DFT modeling reveals interfacial lattice distortion that 

modifies the energy profile, which can account for the 

enhanced ferroelectricity and piezoelectricity in CIPS
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In-situ PFM of CIPS/PZT Monte Carlo Simulation

▪ Stripe domains in 

CIPS disappear at 

225 °C (~TC)

Jiang et al., ACS 

Appl. Electron. 

Mater. 3, 4711 

(2021)

✓ Precise domain control  high density of 

polarization-enabled devices

✓ High TC  high thermal stability

Wang et al., Nat. 

Commun. 10, 

3037 (2019)
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➢ Relatively low TC impedes room-temperature application

➢ CIPS on doped Si and Au: spontaneous 

formation of Pup and Pdown domains

Rahman et al., 

ACS Nano (2022)
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▪ MC simulation reveals 

enhanced TC ~ 650 K for CIPS 

on PTO, agreeing with the 

experimental result
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Polarization of CIPS and PZT antialigned

Finite Element Analysis

▪ Ground state (GS): intralayer 

displacement leads to negative d33

▪ Metastable state (MS): interlayer 

displacement leads to positive d33

The antialigned configuration has lower energy

▪ Higher lattice distortion in the aligned polarization state leads to higher 

elastic energy cost

▪ Polarization antialignment is preferred, consistent with experimental 

observation
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➢ Interfacial lattice distortion tilts the quadruple well

➢ Energy barrier to MS (d33 > 0) is suppressed in region III
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d33 < 0 (GS)
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