

NEBRASKA CENTER For Energy Sciences Research

- Commercial neutron detectors based on heterojunction and homojunction diodes contain conversion layers
- Efficiency decreased by intrinsic geometry and small active regions

Creating neutron detectors with increased efficacy

- Devices with heteroisomeric diodes leverage boron-rich boron carbide semiconductors without a conversion layer
- Improved sensitivity by increasing prevalence of ¹⁰B and film thickness

Electronic Transport Properties

Electronic Transport Properties of Boron Carbide

Ruthi Zielinski, Esha Mishra, Nhat Nguyen, Bryce Herrington, and Robert Streubel

Neutron Detection

Current generation

- One photon creates a single charge-hole pair
- One neutron generates more than 10⁵ charge-hole pairs
- Detection of single thermal neutron possible
- Electrical signal is generated when ¹¹B splits into charged helium-4 (alpha particle) and lithium-7

On state refers to conducting diode.

Uincoln

Temporal evolution

- PN-junction constitutes resistor and capacitor with characteristic discharging time
- Response / detection time less than 20 μ s

Arrows indicate neutron detection event.