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How Does Methanosarcina acetivorans
Respond to the Production of Isoprene?

Abstract

Methanogens are obligately anaerobic archaea noteworthy for producing methane from C1
compounds and acetate. The energetic limitations of these low-energy substrates require
methanogens to utilize a highly efficient central metabolism which greatly favors respiratory

Engineering Methanogens to Produce
Non-Native Metabolites
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significantly significantly variable genes
(p>0.01) are indicated in grey. Increases
in expression of genes associated with the
Mevalonate Pathway was expected given
the increased demand for mebrane
precursors in ispS+ strains. The increase
in biomass observed and decrease in CO,
production despite producing the same
amount of methane leads us to propose

produce the hemiterpene isoprene. We that isoprene producing strains would result in a
decreased growth phenotype corresponding to a depletion of metabolic precursors needed for
isoprenoid membrane production. We found that the engineered methanogens responded well
to the modification, directing up to 4% of total towards isoprene production and increasing
overall biomass despite the additional metabolic burden. Using flux balance analysis, RNA
sequencing, and scale bioreactor growth we investigated how the engineered strains respond to
Isoprene production and how production can be enhanced.
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Figure 3. General overview of engineering a isoprene producing methanogen.

The gene for isoprene synthase was selected from Populus alba. The gene was codon optimized for expression in
Methanosarcina species and is cloned into a plasmid containing an archaeal antibiotic resistance marker. The plasmid is
transfected into M. acetivorans and selected for under antibiotic stress. Confirmation of gene insertion of attained by PCR and
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expression is confirmed via reverse transcription. The methanogens are cultivated and the volitile isoprene was collected in an oill AP, Biosynthesis
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RNAseq of Engineered Methanogens

RNA samples were ribosomally depleated and treated with
DNase before sequencing with an lllumina HiSeq sequencer.
Reads were assembled and annotated onto the genome of M.
acetivorans C2A and differential expression analysis was

Figure 7. Scale-up conditions for M. acetivorans and increases in biomass yield. Laboratory strains of M.
acetivorans were grown in an Eppendorf BioFlo® 320 in high salt (HS) medium supplemented with
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performed using DEseq?2.
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