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The reconstruction and analysis of metabolic models has garnered increasing attention due to the multitude of
applications in which these have proven to be practical. The growing number of generated metabolic models has
been accompanied by an exponentially expanding arsenal of tools used to analyze them. In this work, we dis-
cussed the biological relevance of a number of promising modeling frameworks, focusing on the questions and
hypotheses each method is equipped to address. To this end, we critically analyzed the steady-state modeling
approaches focusing on resource allocation and incorporation of thermodynamic considerations which produce
promising results and aid in the generation and experimental validation of numerous predictions. For smaller
networks involving more complex regulation, we addressed kinetic modeling techniques which show encour-
aging results in addressing questions outside the scope of steady-state modeling. Finally, we discussed the po-
tential application of the discussed frameworks within the field of strain design. Adoption of such methodologies
is believed to significantly enhance the accuracy of in silico predictions and hence decrease the number of design-
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build-test cycles required.

1. Introduction

Since the advent of the first genome-scale metabolic model (GEM) of
Haemophilus influenzae RD in 1999 (Edwards and Palsson, 1999), GEM
reconstruction has become an established protocol to perform systems-
level investigation of metabolic networks of different species (Thiele
and Palsson, 2010). These reconstructions constitute a mathematical
representation of the actual metabolic network and enable in silico
determination of intracellular metabolic activity and hence phenotypic
behavior under different contexts (Lewis et al., 2012; Price et al., 2004).
GEMs also serve as a platform for the integration and analysis of various
types of omics data such as transcriptomics, proteomics, metabolomics,
and fluxomics (Kim et al., 2015; O’Brien et al., 2015; Ryu et al., 2015).
This external data-integration has transformed genome-scale metabolic
modeling into a data-driven discipline by enabling scientists to simul-
taneously measure and incorporate data on large numbers of molecular
components (e.g., nucleic acids, proteins, and metabolites) into a single
coherent framework that can then be analyzed to generate testable
predictions (Zhang et al., 2009).

Due to the underdetermined nature of GEMs, principles from

optimization and constraint-based modeling (CBM) are often utilized to
analyze such models (Islam and Saha, 2018). Given a defined cellular
objective, CBM frameworks can identify a feasible metabolic state(s)
corresponding to the optimal objective value (e.g. maximal growth rate)
(Islam and Saha, 2018). Following CBM principles, computational strain
design tools based on GEMs aim to identify the minimal set of genetic
interventions resulting in optimal production of a desired metabolite
(Paulo et al.,, 2021). These computational techniques can be broadly
divided into two classes. In the first class, the identified set of genetic
interventions aims to couple product formation to biomass generation
(Machado and Herrgard, 2015). The most widely used frameworks in
this class are based on the bi-level programming framework OptKnock
(Burgard et al., 2003). Other tools have been developed that use
elementary mode analysis to identify genetic interventions without
having to assume a predefined biological objective (Trinh and Thomp-
son, 2012). More recently, another class of strain design tools based on
orthogonality principles has been developed that identifies genetic in-
terventions aimed at de-coupling the activity of the pathway of interest
from biomass generation (Pandit et al., 2017). A case study predicting
succinate overproduction strategies utilizing this approach showed that
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it was advantageous compared to growth-coupled approaches (Pandit
etal., 2017). With the aid of these tools, the field of model-guided strain
design has resulted in remarkable improvements in the production of
various industrially relevant products (Simeonidis and Price, 2015).
Most recently, GEMs of the industrially relevant bacteria Thermotoga sp.
and Geobacillus icigianus were reconstructed and used to identify stra-
tegies to improve production of an array of commercially viable me-
tabolites including 2,3-butandiol (Simeonidis and Price, 2015).
Furthermore, a GEM of Saccharomyces cerevisiae was used to identify
genetic interventions that would enhance its capability to overproduce
succinate, ethanol, and 2,3-butanediol (Shen et al., 2019). A number of
excellent review articles describing current state of the art strain design
methodologies and their applications have been published (Burgard
et al., 2003; Chen et al., 2020; Chowdhury et al., 2015; Feist et al., 2010;
Tian et al., 2017).

However, due to the computational complexity of incorporating
thermo-kinetic constraints or expanding the metabolic network to ac-
count for other cellular processes, current strain design tools are pri-
marily based on steady-state mass balance constrains and neglect to
consider other physical and biological aspects that reduce the actual
allowable solution space of potential strain candidates. Therefore, they
generate a large set of potential genetic interventions, a significant
portion of which are not physiologically feasible due to inherent ther-
modynamic, regulatory, or kinetic constraints. Furthermore, certain
bioproducts can only be made by specific species when cells are in the
stationary growth phase such as the malynol-coA-derived metabolites 3-
hydroxypropionic acid and naringenin produced in E. coli (Tokuyama
et al., 2019) and poly-p-hydroxybutyrate produced in Synechocystis sp.
PCC 6803 (Koch et al., 2020). Considerations including thermodynamic
feasibility of a reaction/pathway and the change in required resources
(i.e., enzymes) under different conditions have yet to find widespread
use in strain design. Incorporation of these constraints in other contexts
has resulted in significant improvements in prediction accuracy
compared to purely stoichiometric methods (Fleming et al., 2009;
Goelzer et al., 2015; Jankowski et al., 2008; Mori et al., 2016; Sanchez
et al., 2017).

Despite the wide array of successful applications achieved using
CBMs, these methods suffer from two inherent drawbacks, which can
potentially lead to inaccurate strain design predictions. First, these
methods rely on optimizing an objective function such as maximizing
the rate through a particular reaction. Therefore, the accuracy of the
solutions obtained is dependent on how representative the chosen
objective is of the metabolic state. Experimental studies showed that the
cell’s metabolic activity is a result of multiple objectives (Schuetz et al.,
2012). Furthermore, the weight of each objective varies depending on
the growth condition (Schuetz et al., 2012). Moreover, optimization of
these objectives occurs over evolutionary timescales and is therefore
most apparent in wild-type species (Segre et al., 2002). Tt is therefore not
realistic to assume that the cell will re-optimize its metabolic activity
once a genetic intervention is introduced (Segre et al., 2002). Instead,
the thermo-kinetic attributes of the enzymes will naturally cause the
metabolic activity to reach a new steady state. Consequently, the greater
the introduced genetic intervention disrupts the “native” metabolic ac-
tivity, the less accurate the optimization-based approach becomes.
Second, constraint-based methods developed up to date are not capable
of directly accounting for regulatory interactions in the network (Strutz
et al., 2019). Hence it is difficult for such methods to predict the effect
that such interactions may play once a genetic intervention is intro-
duced. For these reasons, the modeling community have been interested
in developing frameworks that can address these drawbacks. One such
approach which has been garnering increasing attention is kinetic
modeling. In this approach, metabolic and regulatory processes are
described through kinetic expressions such as mass-action or Michaelis-
Menten (Kim et al., 2018). Starting with a set of initial conditions, the
temporal behavior of the metabolic and regulatory network can be
determined. However, until recently, practical application of this
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framework has been dependent on the availability of measured enzyme
kinetic parameters for all enzymes in the network, which is usually not
feasible (Srinivasan et al., 2015). In the past decade, a significant effort
has gone into developing methodologies capable of constructing large-
scale kinetic models using more attainable omics data (i.e. fluxomics,
metabolomics, etc.). These efforts have cultivated in the development of
unified and self-containing frameworks such as MASSpy that allow the
generation of standardized kinetic models (Haiman et al., 2021). Several
excellent reviews have described the different kinetic frameworks
available and the limitations associated with each (Chowdhury et al.,
2015; Foster et al., 2021; Link et al., 2014; Saa and Nielsen, 2017; Strutz
et al., 2019). These methods have been used to hypothesize reaction and
regulatory mechanisms (Alsiyabi et al, 2021; Link et al, 2013;
Schroeder and Saha, 2019), suggest engineering interventions (Foster
etal., 2021; Kim et al., 2018; Tan and Liao, 2012), and analyze network
sensitivity to predict rate-limiting reactions in a pathway (Theisen et al.,
2016). While several kinetic modeling frameworks have been devel-
oped, this review focuses primarily on ensemble modeling (EM) (Greene
et al., 2017; Lee et al., 2014; Rizk and Liao, 2009a; Tan and Liao, 2012;
Tran et al., 2008; Zomorrodi et al., 2013) which is one of the most widely
implemented methods and requires relatively minimal experimental
data compared to the other frameworks. Incorporation of kinetic infor-
mation during the process of strain design is expected to result in more
refined and higher confidence engineering suggestions that subse-
quently require lesser resources to validate (Islam et al., 2021).

This review describes a number of recently developed approaches
that can be incorporated into the strain design process. The following
three sections describe how concepts from thermodynamics, protein
allocation, and enzyme kinetics can be applied to metabolic networks.
Each section provides a simplified description of the biological un-
derpinnings underlying each concept and discusses a number of recently
developed approaches that incorporate such frameworks. The reviewed
approaches were chosen based on analysis of current trends in the
modeling community which reveal their widespread adoption across
many different modeling applications. Recent successful applications of
each framework are also discussed. Finally, each of the described ap-
proaches is discussed in terms of the utility for engineering applications.
This discussion aims to provide a general guideline regarding the type of
approach most useful based on the organism of interest and the available
data. Following such a systematic approach during the computational
strain design phase is expected to significantly accelerate the rate of
enhanced strain development.

2. Thermodynamic based approach

Despite the convoluted nature of metabolic networks in living or-
ganisms, metabolism, just like any other natural process, follows the
laws of thermodynamics. Therefore, it is important to understand the
fundamental principles that connect thermodynamic properties to the
metabolic networks (Dai and Locasale, 2018). As laws of thermody-
namics are applicable to metabolic networks, including thermodynamic
properties of reactions greatly increases the predictability of
stoichiometry-based methods (SBMs) by reducing the feasible solution
space of the system. The second law of thermodynamics states that a
positive net flux through a reaction always corresponds to a negative
change in the Gibb’s free energy of the reaction and vice versa (Hoppe
et al., 2007). Therefore, incorporation of thermodynamic information is
useful to determine reaction directionality (Henry et al., 2006), avoid
infeasible cycles (Henry et al., 2007; Schellenberger et al., 2011), and
identify different regulatory locations in the metabolic network (Henry
et al., 2006; Kiimmel et al., 2006). Here we focus on a number of widely
used thermodynamics-based modeling frameworks including
Thermodynamics-based Metabolic Flux Analysis (TMFA) and Max-min
driving force (MDF) analysis to illustrate the predictive capability of
such methods.

In TMFA (Henry et al., 2007), a set of linear thermodynamic
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constraints ensuring proper reaction directionality is added to the con-
ventional steady state mass-balance constraints of Flux Balance Analysis
(FBA). In the TMFA algorithm, all reversible reactions are decomposed
into a forward and backward direction to determine whether a reaction
can carry a nonzero flux in either direction. This is achieved using the
standard Gibbs free energy values either measured or calculated by the
group-contribution method (Constantinou and Gani, 1994). Addition-
ally, if the standard Gibbs free energy change of certain reactions is not
known and cannot be reliably estimated using group contribution
methods, those reactions are lumped into a new set of metabolic trans-
formations for which the standard Gibbs free energy change can be
estimated (Henry et al., 2007). TMFA has been incorporated as part of
the computational framework called the Biochemical Network Inte-
grated Computational Explorer (BNICE) (Henry et al., 2010) which can
be used for automated design and evaluation of novel biosynthesis
routes. BNICE relies on the TMFA framework to calculate Gibbs free
energy changes to determine the thermodynamic feasibility of reactions
in the given network. With these capabilities, BNICE was used to eval-
uate routes for production of 3-hydroxypropanoate (3-HP) from pyru-
vate within Escherichia coli. Through this approach, researchers were
able to calculate maximum theoretical yield of cellular production of 3-
HP and predicted that pyruvate and succinate stand out as the most
efficient intermediates to produce 3-HP (Henry et al., 2010). Although
the TMFA approach is useful in strain design, it is limited by its inability
to quantify the extent to which free energy restricts flux through a re-
action and therefore cannot predict the most thermodynamically effi-
cient route.

To expand the predictive capability of thermodynamic-based
modeling approaches, the MDF framework was developed to quantify
the effect of free energy on the activity of a metabolic pathway (Noor
et al., 2014). MDF assumes that activity through a linear pathway is
limited by a thermodynamic bottleneck in one of the participating re-
actions. Therefore, the MDF algorithm identifies a concentration profile
which maximizes the thermodynamic driving force through this rate-
limiting reaction. The biological interpretation underlying the frame-
work is that reactions operating close to equilibrium (low thermody-
namic driving force) require significantly more enzyme, and hence
carbon and energy resources, to achieve the same forward rate as a re-
action with a high driving force (Fig. 1). Therefore, in order to minimize
the total enzyme requirement, pathways evolve to maximize the meta-
bolic driving force associated with the rate-limiting reaction.

A recent framework named OptMDFpathway (Héadicke et al., 2018)
which is an extension of MDF has been developed to generalize the use
of this method to metabolic networks instead of single pathways. The
Mixed Integer Linear Programming (MILP) based OptMDFpathway
calculates both the optimal MDF for a desired phenotypic behavior and
the respective pathways that support the optimal driving force. To show
its efficacy, the OptMDFpathway approach was used to systematically
identify all substrate-product combinations in E. coli where product
synthesis allows for net CO, assimilation through thermodynamically
feasible pathways. Since CO fixation requires overcoming high ther-
modynamic potentials, this analysis required a method to search for
pathways that are not only stoichiometrically but also thermodynami-
cally feasible. The OptMDFpathway method enabled the identification
of thermodynamically viable CO, fixation pathways on a genome-scale
(Hadicke et al, 2018). Such applications illustrate how
thermodynamics-based approaches can potentially be used to identify
and objectively rank pathways based on their respective metabolic
driving forces.

Although the application of thermodynamic considerations in
metabolic modeling has opened a new direction for strain design, better
methods are still required to constrain metabolite concentrations. Ac-
curate estimation of intracellular driving forces is dependent on a pre-
specified set (or range) of metabolite concentrations. This limitation
can be mitigated by using experimentally measured values for highly
connected metabolites such as cofactors and central metabolites to
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Fig. 1. Common approaches for incorporating thermodynamic constraints into
metabolic models. (A) In TMFA, thermodynamic constraints are used to
determine thermodynamically feasible directionality as well as flux and
metabolite activity profiles. In this formulation, free energy does not directly
constrict the rate of a reaction. (B) In MDF, the activity of a pathway is assumed
to be limited by the thermodynamically limiting reaction. In this formulation,
the enzymatic requirement of a reaction is assumed to be proportional to the
thermodynamic driving force. Therefore, the maximal rate through a pathway
is achieved by maximizing the metabolic driving force through the thermody-
namically limiting reaction. In this illustration, the pathway converting
metabolite A to D is limited by the highly carbon and energy intensive third
reaction. The low thermodynamic through this reaction means that more
enzyme is required to maintain the same flux as other reactions in the pathway.

further reduce the solution space and obtain more accurate predictions
(Noor et al., 2014). Furthermore, some frameworks incorporate objec-
tives to minimize the cellular concentration of metabolites to predict
physiological concentrations (Tepper et al, 2013). In addition,
thermodynamics-based methods inherently assume that metabolic flux
is not restricted by other factors such as enzyme kinetics, saturation, or
regulation. Therefore, it is apparent that the accuracy of such methods
decreases in cases in which such factors are relevant. For example, as
will be discussed in the following section, there are cases where enzyme
availability is the limiting factor in a specific pathway and hence, other
modeling approaches, such as resource allocation modeling, can provide
more information.

3. Resource allocation-based approach

Resource allocation is another important aspect of metabolism to
consider during strain design. Cells are self-replicating and require not
only energy, but also machinery such as ribosomes and metabolic en-
zymes to duplicate and grow (Basan, 2018). Cells allocate resources for
the machinery through cross-talk between metabolism and gene product
expression, thus allowing for shifts in strategies in response to envi-
ronmental stimuli (Basan, 2018; Donati et al., 2018). The “cost” of the
enzymatic machinery plays a role in determining which strategy is fol-
lowed and therefore helps determine metabolic processes and pheno-
typic profiles. For instance, when considering growth, purely
stoichiometric approaches such as flux balance analysis may reveal two
pathways resulting in the same flux of biomass precursors. However, the
pathways may differ in the extent of enzymatic machinery required.
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Consideration of the machinery cost would elucidate which pathway
results in faster growth. Furthermore, conventional stoichiometry-based
modeling frameworks account for non-metabolic energetic costs by
incorporating ad hoc parameters such as growth and non-growth asso-
ciated maintenance requirements (Thiele and Palsson, 2010). These
parameters, often obtained through experimental data, are usually
assumed to remain constant across different growth conditions. The
inclusion of the expression matrix in resource allocation based methods
allows direct incorporation of the cellular processes incurring a signifi-
cant portion of such costs (O’Brien et al., 2013), allowing for direct and
condition-specific predictions of the overall energy requirements. Un-
derstanding how resource allocation impacts cell phenotypes is impor-
tant for advancements in understanding phenomena such as the
Crabtree effect in yeast cells and the Warburg effect in cancers cells,
which are both instances where fast growing cells are utilizing low yield
pathways (Goel et al., 2012). Take, for example, the Crabtree effect
described in yeast cells (Pfeiffer and Morley, 2014). This effect describes
the phenomenon in which some yeast cells produce ethanol via
fermentation in aerobic environments with high glucose concentrations.
This is interesting because typically, when oxygen is present, the cells
produce biomass via respiration, which is a more energy efficient
metabolic pathway than fermentation. The shift to less efficient meta-
bolism seen in the Crabtree effect can be explained by taking into ac-
count the limited membrane space that enzymes can occupy (Goel et al.,
2012). In order to maintain cell membrane integrity, the ratio of
membrane-bound proteins to lipids cannot get too high, When the limit
is reached for respiratory proteins, that is when fermentation kicks in
and acts as an alternative pathway for ATP production. The shift to
fermentation explained by membrane space limitations is a clear
example of how understanding resource limitations and allocation
strategies can elucidate unintuitive phenotypes. Such strategies can be
explained by looking at resource allocation and enzyme cost. Therefore,
resource allocation should be considered during strain design since it is
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important for predicting behaviors such as catabolite repression and
overflow metabolism (Basan, 2018) which are two important aspects to
consider during strain design. Metabolic models that can capture
resource allocation within a cell can allow for strain design with more
accurate phenotypic predictions. Additionally, accounting for enzyme
cost would allow for strain design to avoid pathway structures with too
high enzyme per unit flux, which could be outcompeted during evolu-
tion or allow for ranking of strain design suggestions based on enzyme
cost (Lerman et al., 2012). While several methods have been developed
to address resource allocation, two of the main methodologies, Meta-
bolic and Expression (ME)-modeling and enzyme cost minimization
(ECM), will be discussed in this paper.

ME-models are genome-scale optimality models of metabolism that
not only include the inputs of metabolic stoichiometry, but also include
gene expression information (O’Brien et al., 2013) (See Fig. 2). This is
similar to Resource Balance Analysis (Goelzer et al., 2011), a method-
ology developed around the same time as ME-modeling. RBA in-
corporates metabolic fluxes as well as protein concentrations and in
doing so allows for cells to be modeled as a set of subsystems which all
share resources. RBA and ME-modeling both improve upon simple
metabolic models in similar ways (Goelzer and Fromion, 2011), and in
this review we will discuss only ME-models in more depth.. As input,
ME-models require the conditions of a steady-state environment and can
then output predictions for maximum growth rate, substrate uptake and
by-product secretion, metabolic fluxes, and gene expression levels. This
method utilizes a growth optimization function along with coupling
constraints that tie flux to transcriptional and translational reactions in
the model. These constraints are functions of the growth rate and are
included as rows in the stoichiometric matrix. The three types of
coupling constraints include those to approximate the passage of intact
transcription units to daughter cells, limit the number of times mRNA
can be translated before degradation, and approximate enzyme abun-
dance and activity. These coupling constraints are based on the effective
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Transcription

Overall Reaction:
RNAP + nNTP => mRNA + 2nPi
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Fig. 2. Overview of metabolic processes incorporated into metabolic and expression modeling. Molecular processes involved in the expression of enzymes are
incorporated as reactions similar to metabolic transformations. These reactions can then be appended to the stoichiometric matrix of GEMs, where each macro-
molecular component constitutes an additional row in the matrix and each process corresponds to an independent row. The stoichiometric coefficients of catalytic
macromolecules (e.g. enzymes) correspond to their turnover rate, which corresponds to the number of reactions catalyzed per doubling time.
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catalytic rate, which is the rate at which the enzyme-substrate complex
dissociates into free enzyme and product, and the degradation rate,
which is the rate at which the molecular machinery breaks down. By
including these constraints, ME-models set limitations on fluxes based
on transcription, translation, and the dilution of cellular machinery to
daughter cells. Since ME-models account for dilution of structural ma-
terials, it is possible to utilize a structural equation that can account for
composition changes based on environmental variations and growth
rate (Lerman et al., 2012). For an illustrative diagram explaining ME-
modeling, we recommend Fig. 1 of Lerman et al., 2012.

The ME-modeling approach was used in E. coli to accurately predict
non-linear growth patterns and secretion profiles that account for both
nutrient limiting and proteome limiting conditions (O’Brien et al., 2013)
and to identify mutations linked to increased growth rate (LaCroix et al.,
2015). ME-modeling was also applied in other organisms including
Thermotoga maritima and Clostridium ljungdahlii. In Thermotoga maritima
ME-modeling provided accurate predictions of growth and secretions as
well as improved upon the known genome and transeriptome annota-
tions by identifying new regulons (Lerman et al., 2012). In Clostridium
ljungdahlii, an ME-model demonstrated improvement over an M-model
by providing predictions in both batch and nutrient limited conditions,
providing simultaneous predictions of carbon uptake and maximal
growth rate, and intrinsically elucidating alternative fermentation
pathways leading to overflow metabolism (Liu et al., 2019).

ECM (Noor et al., 2016) is another modeling methodology that
captures resource allocation; however, unlike ME-modeling, ECM can
incorporate enzyme kinetics and metabolite concentrations. This is a
tiered approach that utilizes an algorithm based on convex optimization
to predict steady-state enzyme costs and allows implementation with
scalable amounts of input. Since the exact metabolite concentrations are
not often known and measuring these in each possible growth condition
would be impractical, ECM works by setting ranges for metabolite levels,
imposing thermodynamic constraints, and then choosing the solution by
minimizing enzyme cost. The enzyme cost function can be based on
different possible burdens such as enzyme mass or amino acid compo-
sition. In scenarios where less information is available, lower ECM tiers
allow for more simplified rate laws to be computed. The simplest tier,
ECMO, is equivalent to parsimonious FBA (Lewis et al., 2010) and uti-
lizes only a metabolic network with steady-state fluxes. ECMO sets all
enzymes to the same catalytic constants and burdens, thus setting the
enzyme cost proportional to the sum of fluxes. However, there can be
vastly different catalytic constants and enzyme masses, making ECMO
oversimplified. ECM1 adds an additional layer of complexity by
including catalytic constants and enzyme burden, allowing for individ-
ual flux burden for each enzyme. ECM1, however, is still simplified by
setting all enzymes to their maximal rates and assumes irreversibility
and substrate saturation. ECM2 includes terms for reversibility and
ECM3 includes terms for both reversibility and substrate saturation, thus
allowing for more complexity to be included. ECM4, the highest tier,
includes the most realistic rate law which can include specific mecha-
nisms for substrate binding and allows for the most complexity. This
scalable method thus allows for flexibility based on desired complexity
of the model and available data. For an illustrative diagram explaining
ECM, we suggest Figure 8 of Noor et al., 2016.

Comparisons of model-based predictions of enzyme levels in E. coli
demonstrated that ECM performed better than a time-dependent kinetic
model of E. coli’s central metabolism, thus supporting the reasoning that
enzyme cost is important in cell function (Noor et al., 2016). In another
study, ECM was used to solve across all possible elementary flux modes
to specifically study growth/yield trade-offs in E. coli (Wortel et al,,
2018). This study elucidated that when oxygen was being consumed, the
reduced oxygen levels lowered the growth rate by requiring higher
enzyme levels in oxidative phosphorylation. This is an example showing
how ECM can shed light on very specific mechanisms.

Both ME-models and ECM provide modeling frameworks for incor-
porating resource allocation considerations which allow for elucidation
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of instances where metabolic processes are limited by machinery
availability. These two strategies provide options for researchers to
model a system based on available data using two different approaches:
ME-models are an extension of conventional GEMs and can therefore
predict steady-state reaction rates of all modeled molecular processes.
However, they do not consider metabolite concentrations and therefore
cannot incorporate thermodynamic constraints or predict metabolite
levels. This framework is ideal for incorporating transcriptomic or pro-
teomic data as well as validating model predictions against such data.
On the other hand, ECM relies on experimental reaction rate data to
predict optimal enzyme and metabolite levels. Therefore, metabolomics
data can be directly incorporated into the framework. Moreover, both
proteomic and metabolomic data can be used to validate model pre-
dictions. Either approach allows for improved predictions on certain
phenotypes such as overflow metabolism (Basan, 2018), which can be
an important aspect to consider during strain design. These modeling
frameworks do, however, come with limitations. While shown to be
useful, ME-models are limited by the necessary set of assumptions,
which are comparable to those made in the ECM1 tier mentioned pre-
viously. It has been shown that the effective catalytic rates of enzymes
vary under nutrient limitation, with the trend being a decrease in ac-
tivity (O’Brien et al., 2013). ME-models account for this by making two
assumptions; 1) under nutrient limitation, proteins content is maxi-
mized, and 2) the catalytic rates of all proteins are below maximum
(O’Brien et al., 2013). With these assumptions, all catalytic rates are
decreased, which could result in inaccurate values for certain enzymes
that are important in specific nutrient limiting conditions. A model that
accounts for the relationship between metabolite concentrations and
enzymatic activities would improve the accuracy of the predictions
generated similar to what is found in enzyme cost minimization. How-
ever, ECM also suffers a major limitation due to the scarcity of the ki-
netic data required. Therefore, parameter predictions and
simplifications must be used for lower ECM tiers, which might result in
inaccurate predictions. In order to address this limitation, there is a need
for easier ways to generate “kinetomes,” libraries of all kinetic param-
eters, for organisms of interest, either through in vitro characterization
or reliable model predictions (Nilsson et al., 2017). Even with all the
data available, ECM still has some limitations. Unlike ME-models, ECM
does not explicitly incorporate transcription and translation reactions
which allows for less fine-tuned exploration of cellular resource allo-
cation. Sometimes minimizing enzyme cost cannot predict cellular
behavior (Nilsson et al., 2017). There may be benefits to cells main-
taining some unused level of proteins in order to adapt to new envi-
ronments or chemical storage and ECM does not account for such
situations. Furthermore, both ME-models and ECM are limited by the
assumption that the systems are operating at steady-state. Since, steady
state assumptions do not allow for dynamic modeling of the system, this
limits the ability to incorporate cellular regulation. Next, we discuss
kinetic models, which can capture dynamic behaviors over time and
allow more direct incorporation of regulatory mechanisms.

4. Kinetic modeling approach

Kinetic modeling allows for a detailed description of the metabolic
and regulatory processes through non-linear kinetic expressions
(Chowdhury et al., 2015; Foster et al., 2021; Islam et al., 2021). In this
section, we focus on the EM approach as a tool to describe the kinetics of
metabolic networks using readily available experimental data (Kho-
dayari and Maranas, 2016; Tan and Liao, 2012; Tran et al., 2008). The
EM framework was developed to sample through the entire allowable
kinetic solution space to generate an ensemble of kinetic models that
describe the system (Tan et al., 2011). By doing so, the EM approach
overcomes the limitation of data sparsity regarding kinetic parameters.
Furthermore, only standard Gibbs free energy of the modeled reaction
and wild-type flux distributions are required to parameterize the initial
ensemble of models. Gibbs free energies are now routinely determined
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using either group or component contribution methods (Jankowski
et al., 2008; Noor et al., 2013). Furthermore, the use of 3C MFA
methods to elucidate flux distributions has also become prevalent in
systems biology (Long and Antoniewicz, 2019). When such in vivo flux
data is unavailable, uptake and secretion rates can be measured and
incorporated into FBA methods to predict the in silico flux distribution
(Rizk et al., 2011). This generated ensemble is then filtered using prior
knowledge of the system’s response to different genetic perturbations.
Models passing all applied filtration steps are considered to be highly
representative of the actual system kinetics (Rizk and Liao, 2009b). The
EM approach has been used to capture the inherent non-linearity of
metabolic systems and to identify metabolic bottlenecks in the produc-
tion of various industrially relevant compounds including ethanol
(Greene et al., 2019), aromatics (Rizk and Liao, 2009b), and 1-lysine
(Contador et al., 2009). In addition, EM has been used to predict the
presence of regulatory interactions occurring in biochemical pathways
(Alsiyabi et al., 2021; Link et al., 2013). It is of note that these pre-
dictions would not have been possible through constraint-based steady-
state approaches.

Kinetic modeling approaches, including EM rely on a number of as-
sumptions that result in some inherent limitations. Firstly, most kinetic
modeling algorithms rely on solving a set of stiff ordinary differential
equations (ODEs) and are therefore computationally costly (Srinivasan
et al., 2015). However, recent advances significantly reduce the burden
of such computations by converting the system of ODEs to a set of
algebraic equations (Foster et al., 2019, 2021; Gopalakrishnan et al.,
2020). Furthermore, model reduction techniques can often be imple-
mented to reduce the number of parameters without sacrificing pre-
dictive power (Greene et al., 2017). The validity of the predictions made
by these methods is also reliant on the accuracy of the network structure
(Strutz et al., 2019). Therefore, missing reactions or regulatory in-
teractions may result in discrepancies between prediction and obser-
vation. Although approaches to test different hypothetical network
structures have been implemented (Alsiyabi et al., 2021; Steuer et al.,
2006), it is often infeasible to test the entire solution space of metabolite-
enzyme interactions due to the current computational cost of simulating
each regulatory network. Furthermore, regulatory interactions in which
the regulator is not part of the metabolic network such as enzyme
phosphorylation or protein-protein interactions are currently outside
the scope of the described frameworks. In addition, the accuracy of the
fitted kinetic parameters is highly dependent on the experimental
datasets used to train the model. For example, models trained on data
obtained during aerobic growth only tend to have lower accuracy when
tested under anaerobic conditions (Khodayari and Maranas, 2016).
Moreover, the EM approach assumes that a genetic perturbation does
not affect the expression of non-perturbed enzymes. However, this
assumption is not necessary if proteomic data is available for both the
reference and perturbed states. In cases where proteomic data is not
available, resource allocation methods such as ME modeling or ECM can
be implemented to predict how genetic or environmental changes affect
the protein expression of each enzyme in the network. These predictions
can subsequently be used to parameterize the kinetic model. Finally,
current kinetic modeling methods do not incorporate transcriptional
and translational regulation. Since the effect of such regulation is ulti-
mately on protein levels, this limitation is related to the assumption
described above, where the effect of changes in protein expression on
metabolic activity is assumed to be negligible compared to the metabolic
effect resulting from the applied perturbation. Therefore, implementa-
tion of these methods without incorporating proteomic data (experi-
mental or predicted) may not be appropriate under conditions in which
the effect of such regulation greatly affects the metabolic state. These
limitations highlight the need for incorporating experimental or
computational proteomic measurements into kinetic models to improve
their accuracy.

In addition to the limitations and inherent assumptions highlighted
above, EM and other kinetic modeling frameworks have other
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challenges that constrain their use in strain design. Most notably are the
long solve times associated with solving a set of nonlinear stiff ordinary
differential equations (Strutz et al., 2019). Although recently developed
methods such as K-FIT (Gopalakrishnan et al., 2020) have made sig-
nificant improvements in this regard, incorporating large-scale kinetic
models into a strain design optimization framework remains infeasible.
To circumvent this issue, methods such as k-OptForce (Chowdhury et al.,
2014) integrate small-scale kinetic models with genome-scale stoichio-
metric models to improve strain design predictions. Alternatively, an
exhaustive set of potential genetic interventions can be generated using
conventional methodologies and subsequently tested on a kinetic model
to filter out non-viable solutions. As the computational burden of solving
such models decreases, future approaches may utilize concepts such as
optimal control (Tsiantis and Banga, 2020) or cybernetic modeling
(Varner and Ramkrishna, 1999) to systematically predict regulatory
interactions on a genome-scale.

5. Perspectives: incorporating thermo-kinetic approaches into
strain design

A general goal of metabolic modeling is to simulate and accurately
predict an organism’s phenotype under any growth condition. Within
metabolic engineering, this translates to predicting how genotypic
changes (e.g., gene knockouts) affect the desired product’s titer, pro-
ductivity, and yield. Numerous strain design frameworks were devel-
oped to suggest such genetic interventions (Hendry et al., 2020; St John
and Bomble, 2019). Such methods were extensively reviewed (Gu et al.,
2019; Machado and Herrgdrd, 2015; Mienda, 2017) with the majority of
which evolved from the widely utilized OptKnock algorithm (Burgard
et al., 2003; Machado and Herrgdrd, 2015). Briefly, these tools rely on
multi-level optimization formulations that search for genetic in-
terventions in the form of gene insertions, knockouts or modulations
that lead to improved production metrics. However, application of such
methods usually results in multiple optimal solutions with all predicted
to have the same outcome (i.e., product yield). Furthermore, the sug-
gested interventions often do not lead to the predicted results in reality,
due to the lack of the incorporation of the thermo-kinetic factors that
often turn out to play a significant role in the mutant strain. Moreover,
metabolic engineering efforts often resort to overexpression of all genes
involved in a given pathway to brute-force productivity. However, in
addition to the time required to construct the required synthetic biology
tools, such an approach can have unintended outcomes such as a decline
in growth rate or increased by-product formation (Gasser et al., 2008;
Schalén et al., 2016). Incorporation of the approaches discussed in the
previous sections will significantly enhance the strain design process by
addressing some of the inherent shortcomings in current procedures.

The decision of which of the discussed approaches to incorporate
relies on the availability of the required data and on bibliomic knowl-
edge of the organism of interest. The following example demonstrates a
number of commonly encountered cases during strain design where
implementation of the discussed approaches can be used to refine ge-
netic engineering suggestions (Fig. 3). The pathway depicted in Fig. 3A
illustrates a simplified metabolic network containing alternate pathways
that lead to the growth-associated product of interest X,,. In this depic-
tion, breakdown of the substrate generates the reduced cofactor CH2
required in each of the two alternate product-forming pathways. A sig-
nificant number of bioengineering objectives are hindered by cofactor
availability (Akhtar and Jones, 2014; de Arroyo Garcia and Jones,
2020). Due to the participation of cofactors in a large number of re-
actions in metabolic networks, genetic perturbations often lead to im-
balances in cofactor pools which manifests as a disruption in their
homeostatic redox state. In fact, even substitution of the main carbon
source may cause a significant effect on the redox state of various
electron carriers (Liu et al., 2018). As discussed previously, this distur-
bance directly affects the thermodynamic driving force and hence the
overall rate of any reaction incorporating such cofactors (see
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Fig. 3. Applicability of different modeling approaches within the context of strain design. (A) Simplified depiction of a metabolic network utilizing X; as the main
carbon source and producing the growth-coupled produet X,. Two alternate pathways exist that can transform the carbon source to product. (B) Illustration of how a
thermodynamic modeling approach can identify the change in metabolic driving force as a function of cofactor redox state. The plot illustrates how the driving force
of both independent production pathways is dependent on the cofactor redox state. At low redox ratios, both pathways are constricted by the low driving force of v;.
At high redox ratios, the two pathways are constricted by the driving force through v, and v,, respectively. Metabolomics data can be used to identify the physi-
ological ranges of metabolite concentrations and redox states to identify the organism specific range of MDFs for each pathway. (C) Illustration of how resource-
allocation can lead to differential pathway expression under varying carbon uptake rates. The plot illustrates that at low carbon uptake rates, the cell prefers the
“cheaper” pathway since the production rate is limited by carbon uptake. As the uptake rate increases, the cell activates the more expensive but highly efficient
pathway to enable high production rates. Proteomic and fluxomic data can be used to improve the accuracy of enzyme turnover rates (keg). Furthermore, tran-
scriptomic data can be used to further constrict the solution space by constraining transcription reactions. (D) Illustration of how kinetic modeling can be used to
predict the effect of regulatory interactions on pathway activity. The plot demonstrates how incorporation of regulatory interactions in the network can affect yield
predictions. Fluxomic data is required to parameterize the kinetic model. Proteomic data can be used to improve the parameterization procedure by accounting for
changes in protein concentrations across different conditions. Finally, metabolomic data can be used to calculate denormalized kinetic parameters, which can
subsequently be compared to in vitro measured values. Omics data types written in red are required by the modeling approach, those in purple are not required but
greatly improve accuracy, and those in blue are optional. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

thermodynamic-based approach). It is therefore necessary to determine
the effect of redox state on the metabolic driving force of the pathway of
interest (Fig. 3B). The development of methods such as the group
contribution method (Jankowski et al., 2008) and component contri-
bution analysis (Noor et al., 2013) enables the determination of standard
free energy values on a genome-scale (Niebel et al., 2019; Noor et al.,
2013). Using this data, the thermodynamic-based approaches discussed
can be used to investigate the effect of varying redox-state on the
driving-force through the product-generating pathway. When limita-
tions concerning cofactor redox-state arise, strategies as cofactor sub-
stitution, or the overexpression of certain enzymes in the pathway may
be required. Frameworks such as MDF are ideal for identifying such
potential bottlenecks and for testing the effect of different genetic

interventions on the thermodynamic viability of metabolic pathways.
Another widely used metabolic engineering strategy relies on the
overexpression of certain enzymes, or the incorporation of heterologous
enzymes/pathways to expand the metabolic functionality of the or-
ganism (Fong, 2014). Such strategies confer additional carbon and en-
ergy costs that can lead to system-wide changes in metabolic activity
(Chen and Nielsen, 2019). Conventional strain design frameworks based
primarily on stoichiometric constraints cannot account for such effects
as they inherently assume unlimited enzyme capacity. Therefore, it is
often useful to utilize the discussed resource-allocation approaches to
predict the effect of such perturbations (gene insertion or over-
expression) to ensure that the designed growth conditions (e.g. substrate
concentration) are sufficient to manage the added cost. Moreover, such
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an approach is also advantageous when dealing with alternate produc-
tion pathways (Fig. 3C). It has been observed that under such cases,
metabolism has evolved to activate the most “cost-effective” pathway
(Basan, 2018). Therefore, a resource-allocation based analysis can be
used to ensure that the applied genetic interventions do not result in
undesired carbon loss through by-product excretion. It can also be used
to generate and test design strategies that ensure activity through the
most carbon-efficient route. However, resource-allocation methods
require the input of enzyme catalytic efficiencies (k.g). Such parameters
are not available on a genome-scale for most non-model organisms.
Therefore, one approach that can be used to circumvent this bottleneck
is to scale the catalytic efficiencies of model organisms by the enzyme
specific solvent accessible surface area (SASA) (Miller et al., 1987).
Recent approaches combining metabolic modeling with population ge-
netics models have also demonstrated reasonable accuracy in predicting
organism-specific catalytic turnover rates (Heckmann et al., 2018).

In addition to the metabolic considerations discussed so far, regu-
latory aspects of the network may also affect the production of desired
compounds (Foster et al., 2019; Strutz et al., 2019). This could especially
be true in the case of central metabolites such as fermentation products
(Foster et al., 2019). Due to the tight regulation of central metabolism,
allosteric metabolite-enzyme interactions can cause unexpected dis-
crepancies between predicted and observed production metrics
(Chowdhury et al., 2015). Recently, attempts were made to use kinetic
modeling to account for such interactions (Foster et al., 2019; Gopa-
lakrishnan et al., 2020; Khodayari et al., 2015; Khodayari and Maranas,
2016). Incorporation of allosteric interactions into the metabolic
network allows prediction of how known (or postulated) regulatory
interactions effect production metrics under different growth conditions
or genetic interventions (Fig. 3D). Development of such models requires
multiple sets of flux distributions and is therefore best suited for small to
medium sized metabolic networks. Once the kinetic model is developed,
the effect of allosteric interactions on the rate of production can be
predicted. Results from such an analysis can be used to determine
whether protein engineering efforts are required to eliminate the
inherent regulation or whether other strategies can be used to circum-
vent such effects.

The decision of which approach to implement is dependent on the
types of omics data available and on the specific pathway being opti-
mized. In general, thermodynamic approaches such as MDF are not data
intensive and can serve as useful tools in identifying the thermodynamic
feasibility of different genetic interventions. In addition to readily
available data on reaction standard Gibbs free energy values, incorpo-
ration of metabolomic data on highly connected metabolites such as
cofactors measured under different conditions or obtained from closely
related organisms can significantly constrict the solution space and
hence omit infeasible strain designs. Moreover, in cases where tran-
scriptomic or proteomic data is available, various modeling techniques
based on resource allocation principles can be implemented to predict
how a genetic intervention will affect overall metabolic activity. As
discussed earlier, such techniques are especially useful in testing the
effect of gene insertions or upregulations on productivity of the
metabolite of interest. Finally, availability of fluxomic data can be
leveraged to construct detailed kinetic models. These models can be
further parameterized through metabolomic and proteomic data to in-
crease prediction accuracy (Gopalakrishnan et al., 2020). As metabolic
flux analysis (MFA) and isotope labeling techniques improve, the
coverage of such models will increase and allow for the construction of
near genome-scale kinetic models (Foster et al., 2019).

As computational resources increase, the approaches discussed here
can be more directly implemented into the strain design process. Such
efforts have already begun on a smaller scale and have indeed proven to
yield significant improvements in terms of accuracy and identification of
non-intuitive solutions (Chowdhury et al., 2014). To accelerate this
process, improvements need to be made in several fronts. First, model
reduction techniques (Greene et al., 2017) need to be improved and
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routinely implemented to reduce the number of variables without
compromising model accuracy. Second, improvements in model
formulation that minimize non-linearity and ensure convexity (Gopa-
lakrishnan et al., 2020) will significantly reduce solve times and allow
for larger scale models to be analyzed. Finally, implementation of so-
phisticated numerical techniques to solve stiff ordinary equations will
facilitate the process of combining larger scale kinetic models with
optimization-based strain design formulations.

6. Conclusion

The increase in omics data availability has allowed development of
more complex metabolic modeling frameworks resulting in higher pre-
diction accuracy. However, these techniques have yet to find wide-
spread use in the field of computational strain design. This review
describes three of the major metabolic modeling approaches (i.e.,
thermodynamic, resources allocation, and kinetic modeling) which have
garnered the interest of the metabolic modeling community in recent
years. The biological underpinnings of these approaches and how these
can prove to be useful tools for metabolic engineering are discussed. We
hope this review motivates the development of modeling frameworks
that facilitate the incorporation of the discussed approaches within the
context of strain design. We believe that such tools will significantly
enhance the prediction accuracy and hence decrease the number of
subsequent design-build-test cycles.
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