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Featured Application: Engineered Methanosarcina acetivorans can be introduced to municipal
wastewater to produce renewable bioisoprene.

Abstract: Wastewater biosolids are a promising feedstock for production of value-added renewable
chemicals. Methane-producing archaea (methanogens) are already used to produce renewable biogas
via the anaerobic treatment of wastewater. The ability of methanogens to efficiently convert dissolved
organic carbon into methane makes them an appealing potential platform for biorefining using
metabolic engineering. We have engineered a strain of the methanogen Methanosarcina acetivorans
to produce the volatile hemiterpene isoprene in addition to methane. The engineered strain was
adapted to grow in municipal wastewater through cultivation in a synthetic wastewater medium.
When introduced to municipal wastewater the engineered methanogens were able to compete
with the indigenous microorganisms and produce 0.97 mM of isoprene (65.9 ± 21.3 g per m3 of
effluent). The production of isoprene in wastewater appears to be dependent on the quantity of
available methanogenic substrate produced during upstream digestion by heterotrophic fermenters.
This shows that with minimal adaptation it is possible to drop-in engineered methanogens to
existing wastewater environments and attain value-added products in addition to the processing of
wastewater. This shows the potential for utilizing methanogens as a platform for low-cost production
of renewable materials without expensive feedstocks or the need to build or adapt existing facilities.

Keywords: biorefining; isoprene; methanogen; archaea; Methanosarcina acetivorans; synthetic biology

1. Introduction

Methane-producing archaea (methanogens) are obligate anaerobes which inhabit a
keystone niche in the global carbon cycle, utilizing the endpoint degradation products
of complex organic material and liberating otherwise inaccessible carbon [1–4]. Their
unique metabolism and their potential to utilize a wide array of plentiful substrates make
methanogens a subject of particular interest in industrial applications such as wastewater
treatment [5–7], and the production of value-added products (Figure 1) [8,9]. Methanogens
are used worldwide to reduce dissolved organic carbon in effluent as part of the wastewater
treatment process. Wastewater treatment is a multistage process which is highly variant
depending on the substrate being treated, though the end goal is largely the same: The
detoxification of water by degrading complex biomass and pollutants before reintroducing
the effluent into the water cycle. For the purpose of this study, we focused on the anaerobic
digestion of municipal wastewater which primarily aims to remove dissolved carbon and
suspended solids from a city’s water supply.

Municipal wastewater treatment generally occurs in three distinct stages based upon
the aerobicity of the wastewater and the activity of microorganisms involved in the mul-
tistage process. In the first stage, aerobic microorganisms breakdown complex biomass
into simpler organic material [10]. The deconvoluted material is further anaerobically di-
gested by a second consortia of microbes into one- or two-carbon compounds and organic
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acids. These one- and two-carbon compounds are utilized by methanogens to complete
the decomposition process [6,11]. In addition to removing polluting organic carbon from
the water, anaerobic digestion has the added benefit of producing methane which is often
captured as renewable biogas [11–14]. Due to the low energetic potential of methanogenic
feedstocks, methanogens utilize a highly efficient central metabolism which greatly favors
the production of methane over biomass and heat. Anaerobic treatment of wastewater
results in 95% conversion of the initial substrate into available biogas with 5% being utilized
for microbial biomass [15,16]. We hypothesized that the highly efficient metabolism of
methanogens may have potential to produce high yields of other value-added products in
addition to methane.
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Figure 1. Schematic representation of anaerobic digestion of waste biomass at the Theresa Street 
Water Resource Recovery facility in Lincoln, NE. After aerobic incubation, waste biomass is 
anaerobically digested in a two-step process. First, the complex biomolecules are degraded through 
heterotrophic fermentation to less complex substrates for methanogenic growth in the second 
stage. In the methanogenic bioreactor dissolved organic carbon is converted to biogas that can be 
recouped as a biofuel. Introduction of isoprene-synthesizing methanogens (e.g., strain NB 394 in 
which plasmid pJA2 expressing isoprene synthase is integrated onto the chromosome) to the 
second stage digester has potential to produce renewable isoprene in the captured biogas. 
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adhesives, flavorings, cosmetics, and pharmaceuticals. Traditionally, isoprene is 
harvested from natural rubber from tree sap or produced industrially through the 
thermal cracking of petroleum. By producing renewable isoprene via engineered 
microbes, it could be possible to reduce the need to rely on the harvesting of plant 
biomass or the mining of fossil fuels. Recently our laboratory demonstrated that the 
methanogen Methanosarcina acetivorans can be engineered to efficiently produce 
bioisoprene as a methane coproduct under laboratory conditions [9]. The gene for 
isoprene synthase, ispS, was stably inserted into the chromosome of M. acetivorans 
(att::ispS) and the production of isoprene as well as methane was confirmed via gas 
chromatography. The production of isoprene showed no detrimental effect on growth 
rate or metabolic efficiency of the engineered strains compared with a vector-only 
control. We surmised that without an obvious decrease in fitness it may be possible to 
drop-in these engineered methanogens into an existing anaerobic wastewater treatment 
consortium to produce bioisoprene. However, any inoculated methanogens would have 
to compete for substrate with wild methanogens in the mixed microbial community of 
the anaerobic digester. M. acetivorans has the largest genome of any characterized 
methanogen as well as the widest range of substrate utilization, allowing for growth from 
methanol, methyl-amines, carbon monoxide, and acetate [17,18]. We postulated that this 
metabolic flexibility would allow for our engineered strains to compete with the 
endogenous methanogens present in municipal wastewater resulting in an increase in 

Figure 1. Schematic representation of anaerobic digestion of waste biomass at the Theresa Street
Water Resource Recovery facility in Lincoln, NE. After aerobic incubation, waste biomass is anaer-
obically digested in a two-step process. First, the complex biomolecules are degraded through
heterotrophic fermentation to less complex substrates for methanogenic growth in the second stage.
In the methanogenic bioreactor dissolved organic carbon is converted to biogas that can be recouped
as a biofuel. Introduction of isoprene-synthesizing methanogens (e.g., strain NB 394 in which plasmid
pJA2 expressing isoprene synthase is integrated onto the chromosome) to the second stage digester
has potential to produce renewable isoprene in the captured biogas.

Isoprene (2-methyl-1,3-butadiene) is the primary component of natural rubber and
an important chemical precursor utilized in the production of synthetic rubber as well as
adhesives, flavorings, cosmetics, and pharmaceuticals. Traditionally, isoprene is harvested
from natural rubber from tree sap or produced industrially through the thermal cracking
of petroleum. By producing renewable isoprene via engineered microbes, it could be
possible to reduce the need to rely on the harvesting of plant biomass or the mining of
fossil fuels. Recently our laboratory demonstrated that the methanogen Methanosarcina
acetivorans can be engineered to efficiently produce bioisoprene as a methane coproduct
under laboratory conditions [9]. The gene for isoprene synthase, ispS, was stably inserted
into the chromosome of M. acetivorans (att::ispS) and the production of isoprene as well
as methane was confirmed via gas chromatography. The production of isoprene showed
no detrimental effect on growth rate or metabolic efficiency of the engineered strains
compared with a vector-only control. We surmised that without an obvious decrease in
fitness it may be possible to drop-in these engineered methanogens into an existing anaero-
bic wastewater treatment consortium to produce bioisoprene. However, any inoculated
methanogens would have to compete for substrate with wild methanogens in the mixed
microbial community of the anaerobic digester. M. acetivorans has the largest genome of any
characterized methanogen as well as the widest range of substrate utilization, allowing for
growth from methanol, methyl-amines, carbon monoxide, and acetate [17,18]. We postu-
lated that this metabolic flexibility would allow for our engineered strains to compete with
the endogenous methanogens present in municipal wastewater resulting in an increase in
methane production as well as the production of bioisoprene. The detection of isoprene in
wastewater inoculated with our engineered strains with and without the supplementation
of additional feed substrate supports our hypothesis.
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2. Materials and Methods
2.1. Anaerobic Techniques

Anaerobic procedures were performed in a custom B-type Coy anaerobic chamber
(Coy Labs, Grass Lake, MI, USA). The chamber was maintained at 35 ◦C with an atmosphere
of 5% H2/20% CO2/75% N2 (±3%) (Matheson Gas, Lincoln, NE, USA). The Methanosarcina
acetivorans strains used in this study are the isoprene-producing strain NB394 (∆hpt::ϕC31
int, att:pJA2) and the vector-only control NB452 (∆hpt::ϕC31 int, att:pNB730) [9]. Strains
were cultured in anaerobic high-salt (HS) medium (200 mM NaCl, 45 mM NaHCO3,
13 mM KCl, 54 mM MgCl2·6H2O, 2 mM CaCl2·2H2O, 2 µM 0.1% resazurin (w/v), 5 mM
KH2PO4, 19 mM NH4Cl, 2.8 mM cysteine·HCl, 0.1 mM Na2S·9H2O, trace elements, vitamin
solution) [19] supplemented with a carbon and energy source (methanol, 125 mM; trimethy-
lamine, 50 mM; sodium acetate, 120 mM) and 2 mg L−1 puromycin as needed [20,21]. Cells
were incubated at 35 ◦C outside of anaerobic chamber in glass Balch tubes secured with
butyl rubber stoppers (Belco Glass, Vineland, NJ, USA) and aluminum crimps (Wheaton,
Millville, NJ, USA).

2.2. Synthetic Wastewater

Anaerobic synthetic wastewater (SWW) medium was developed to adapt cells from
laboratory conditions to growth on municipal wastewater [22]. Chemical composition
of SWW medium is based on OECD guidelines for testing of chemicals [23]. SWW is
composed from 28 mg L−1 peptone, 100 mg L−1 meat extract, 100 mg L−1 urea, 161 µM
KH2PO4, 120 µM NaCl, 27 µM CaCl2·2H2O, 8.7 µM MgCl2·6H2O, 0.23% agarose (w/v),
and 3% evaporated milk (w/v), supplemented with a carbon and energy source: 125 mM
of methanol, 50 mM of trimethylamine, or 120 mM of sodium acetate.

2.3. Methane Production Assay

Methane in culture headspace was measured by gas chromatography using a flame
ionization detector (GC-FID) as previously described [24]. Briefly, 10 mL cultures were
grown to stationary phase. After growth, 100 µL of headspace was captured using a
gastight Hamilton syringe and transferred to an empty crimped 2 mL autosampler serum
vial (Wheaton, Millville, NJ, USA). Vial contents were analyzed by flame ionization using a
custom Agilent 7890A Gas Chromatography System (Agilent Technologies, Santa Clara,
CA, USA, 2010). The GC was equipped with an autosampler for consistent sample injection
and utilized a GS CarbonPLOT column (Agilent Technologies, Santa Clara, CA, USA) at
145 ◦C for separation of volatile metabolites. Quantification of methane was achieved by
comparison to a methane standard curve (Matheson, Lincoln, NE, USA) ran in parallel
with experimental samples.

2.4. Isoprene Production Assay

The same GC-FID system as above was deployed to quantify isoprene [22]. M. acetivo-
rans strains were grown in 10 mL cultures with 1 mL paraffin oil overlay in Balch tubes.
Once grown to stationary phase, the oil was harvested and transferred to a 2 mL stoppered
and crimped autosampler vial. The GC-FID method for isoprene quantification was as
follows: 160 ◦C for 35 min, ramp to 200 ◦C at 75 ◦C/min for 20 min, ramp to 275 ◦C at
75 ◦C/min for 20 min, 275 ◦C for 5 min, ramp to 160 ◦C at 75 ◦C/min to equilibrate the
system for the next run. Isoprene quantification was achieved using a standard of known
volumes of isoprene injected into 1 mL of paraffin oil in a 2 mL autosampler vial.

2.5. Municipal Wastewater Handling

Municipal wastewater sludge was collected from the City of Lincoln Teresa Street
Water Resource Recovery Facility (Lincoln, NE, USA) [22]. Two different sludges were
collected anaerobically: One after primary anaerobic digestion, and another after secondary
anaerobic digestion and settling (before dewatering, disinfection, and discharge). Aliquots
(~50 g) were transferred to serum bottles and methanol (5 µL g−1) was added as appropriate.
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Sludge samples were inoculated with 10% (w/v) SWW starter cultures and incubated at
35 ◦C without shaking. Methane and isoprene synthesis were measured as described above
except 10 mL paraffin oil overlay was added. Isoprene was detectable but not accurately
measurable in the headspace when paraffin oil was omitted. Sludge was not autoclaved
until experiments were completed.

3. Results
3.1. Adapting Methanosarcina acetivorans to Growth in Wastewater

A challenge when introducing a laboratory methanogen strain to a wastewater en-
vironment is their sensitivity to changes in osmolarity. M. acetivorans was originally
isolated from marine sediment and grows best under high-salt conditions (400 mM NaCl).
When introduced directly to a comparatively low solute environment such as wastewater
M. acetivorans rapidly lyses. To counteract this phenomenon, strains had to first be adapted
to growth in synthetic wastewater (SWW), a complex growth medium containing mixed
carbohydrates, lipids, and proteins that mimics the composition of wastewater digester
solids [23]. Cultures of M. acetivorans were gradually adapted by supplementing our high-
salt (HS) media with 10% (v/v) of synthetic wastewater every 24 h until the media reached
a ratio of 50:50 HS:SWW (8 days; final NaCl concentration was 100.06 mM). At this point
the methanogens were passaged into SWW supplemented with MeOH and confirmed to
grow without lysis via autofluorescence (Figure 2).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 9 
 

2.5. Municipal Wastewater Handling 
Municipal wastewater sludge was collected from the City of Lincoln Teresa Street 

Water Resource Recovery Facility (Lincoln, NE, USA) [22]. Two different sludges were 
collected anaerobically: one after primary anaerobic digestion, and another after 
secondary anaerobic digestion and settling (before dewatering, disinfection, and 
discharge). Aliquots (~50 g) were transferred to serum bottles and methanol (5 µL g−1) 
was added as appropriate. Sludge samples were inoculated with 10% (w/v) SWW starter 
cultures and incubated at 35 °C without shaking. Methane and isoprene synthesis were 
measured as described above except 10 mL paraffin oil overlay was added. Isoprene was 
detectable but not accurately measurable in the headspace when paraffin oil was omitted. 
Sludge was not autoclaved until experiments were completed. 

3. Results 
3.1. Adapting Methanosarcina acetivorans to Growth in Wastewater 

A challenge when introducing a laboratory methanogen strain to a wastewater 
environment is their sensitivity to changes in osmolarity. M. acetivorans was originally 
isolated from marine sediment and grows best under high-salt conditions (400 mM 
NaCl). When introduced directly to a comparatively low solute environment such as 
wastewater M. acetivorans rapidly lyses. To counteract this phenomenon, strains had to 
first be adapted to growth in synthetic wastewater (SWW), a complex growth medium 
containing mixed carbohydrates, lipids, and proteins that mimics the composition of 
wastewater digester solids [23]. Cultures of M. acetivorans were gradually adapted by 
supplementing our high-salt (HS) media with 10% (v/v) of synthetic wastewater every 24 
h until the media reached a ratio of 50:50 HS:SWW (8 days; final NaCl concentration was 
100.06 mM). At this point the methanogens were passaged into SWW supplemented with 
MeOH and confirmed to grow without lysis via autofluorescence (Figure 2). 

  
(a) (b) 
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Viable methanogens are irregular cocci (0.5–1 µm diameter) that fluoresce blue through a DAPI filter when UV 
illuminated. 

Figure 2. Engineered methanogens adapted to synthetic wastewater. (a) Inoculated synthetic
wastewater (SWW) in anaerobic Balch tubes. (b) Confirmation of live engineered methanogens in
SWW under 400× optical magnification. Viable methanogens are irregular cocci (0.5–1 µm diameter)
that fluoresce blue through a DAPI filter when UV illuminated.

3.2. Measurement of Methane and Isoprene Production on Wastewater

Once growth was achieved in SWW, cells were transferred to wastewater biosolids
pre- and postdigest effluent (before and after second-stage anaerobic digestion) from the
Teresa Street Water Resource Recovery Facility in Lincoln, NE (Figure 3). Microcosms
with and without methanol supplementation were incubated for 5 days at 35 ◦C, after
which time methane and isoprene yields were quantified (Table 1). Methane was detected
from predigest effluent whether or not methanol was added, indicating that substrates for
methanogens (both wild and engineered strains) were present in the effluent (Figure 4).
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Figure 3. Municipal wastewater collected from the Theresa Street Water Resource Recovery Facility
in Lincoln, Nebraska. (Left) Organic solids before anaerobic digestion. (Right) Organic solids after
anaerobic digestion.

Table 1. Methane and isoprene production on wastewater biosolids.

Synthetic Waste Water Predigest Effluent Postdigest Effluent

CH4
a Production

Substrate Strain b mmol L−1 Std Dev mmol L−1 Std Dev mmol L−1 Std Dev

MeOH c att:VOC 84.64 6.19 80.98 7.34 89.87 2.94
att:ispS 83.89 8.32 80.22 9.42 87.63 6.98

None
att:VOC NT 33.85 1.64 31.36 12.30
att:ispS NT 26.36 2.74 54.82 4.57

Heat killed
att:VOC ND ND ND
att:ispS ND ND ND

Isoprene a Production

Substrate Strain mmol L−1 Std Dev mmol L−1 Std Dev mmol L−1 Std Dev

MeOH c att:VOC ND ND ND
att:ispS 0.972 0.301 ND 0.968 0.312

None
att:VOC NT ND ND
att:ispS NT ND 0.144 0.273

Heat killed
att:VOC ND ND ND
att:ispS ND ND ND

a Data were obtained from triplicate biological replicates and triplicate technical replicates (n = 9); b att:VOC, parent strain in which vector
only negative control (plasmid pNB730) was integrated onto the chromosome. att:ispS, strain in which plasmid pJA2 expressing isoprene
synthase was integrated onto the chromosome; c calculated from 125 mmol MeOH (e.g., 250 µL 100% MeOH added to 50 g digester solids)
as described in the Materials and Methods (Section 2.5). NT, Not tested. ND, Not detected.

Methane yield was higher in the postdigest effluent than the predigest effluent, which
was anticipated because wild methanogens are enriched during the anaerobic digestion
treatment step. When methanol was added to SWW, pre- or postdigester effluent the
methane yields were comparable to methane yields when isolated strains are grown in
defined medium [9]. No methane was detected when samples were heat-killed by auto-
claving microcosms before inoculating with engineered M. acetivorans, suggesting active
fermentation by the digester microbial community is necessary to produce substrate unless
the microcosm is supplemented with methanol. Isoprene was not detected from predi-
gest effluent microcosms or when wastewater was heat-killed by autoclaving. Isoprene
production was observed in postdigest effluent microcosms with and without addition
of methanol (Figure 4). With methanol supplementation, isoprene yields were equivalent
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to SWW cultures, which was similar to the isoprene yield achieved by isolated strains
grown in defined medium [9]. Based on these data we estimate up to 0.77 ± 0.25% of
dissolved organic carbon in postdigest effluent was recovered as isoprene (Table 1). These
data suggest engineered M. acetivorans can compete with wild methanogens in anaerobic
digesters and isoprene can be detected in biogas from municipal waste. In pure batch
culture the M. acetivorans ispS+ strain produces 0.89 mmol isoprene per mol methanol per
gram of cells [9], which is 180× the yield of engineered Synechocystis cyanobacteria growing
on CO2 [25]. In comparison, E. coli and Saccharomyces have been engineered to produce
352 and 175 mM isoprene, respectively, from glucose under fed-batch conditions [26,27]. It
is unknown whether any of these engineered strains can synthesize isoprene from digester
effluent as has been demonstrated by M. acetivorans in this work. Additional studies are
needed to develop a commercially viable process that optimizes isoprene recovery from
wastewater digester biogas streams.
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Figure 4. Methane and isoprene production from waste biosolids. Endpoint methane assays after M. acetivorans strains were
added to unsterilized wastewater biosolids digestate or synthetic wastewater (SWW) amended with methanol. (a) Methane
production by isoprene-producing M. acetivorans (att:ispS) and vector only control (att:VOC) strains added to predigest
effluent, postdigest effluent, or SWW with (w/MeOH) and without (w/o MeOH) added methanol. (b) Isoprene production
by M. acetivorans att:VOC and att:ispS strains added to SWW or postdigest effluent amended with methanol and postdigest
effluent without added substrates. Blue, att:VOC strain in which empty vector pNB730 is integrated onto the chromosome.
Red, att:ispS strain in which plasmid pJA2 expressing isoprene synthase is integrated onto the chromosome. All data were
obtained from triplicate biological and technical replicates (n = 9).

4. Discussion

Our results confirm the hypothesis that engineered Methanosarcina acetivorans can survive
in municipal wastewater and produce isoprene at detectable levels. Methane production
was greater in wastewater biosolids which had undergone anaerobic digestion compared
with those samples grown in preanaerobic digestion biosolids. While there is an incidental
enrichment process during fermentation over time, the majority of microbes found in mu-
nicipal wastewater are known bacterial gut symbionts such as Proteobacteria, Firmicutes, and
Bacteroides [28], as well as a diverse collection of methanogens including Methanomicrobiales,
Methanosarcinales, Methanobacteriales, and Methanobrevibacter spp. [29–31]. It has been well
documented that these organisms exchange nutrients via syntrophy both in the gut and
during wastewater treatment [32–35] and methanogen growth is dependent on metabolic
byproducts of upstream microbial metabolism. The increase in methane production ob-
served in samples grown in wastewater postanaerobic digestate suggests the engineered
M. acetivorans ispS+ strains may be capable of participating in syntrophic relationships with
other microbes in the digestate.
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After four days of incubation at 35 ◦C methane was detected though no isoprene
production was identified in samples grown in preanaerobic digested effluent, indicating
that there may not be enough freely available methanogenic substrates for the engineered
strains to compete with the existing microbial population. However, the postdigester
effluent inoculated with our isoprene-producing M. acetivorans incubated under the same
culture conditions yielded detectable bioisoprene (0.144 ± 0.273 mM). When this post-
digest effluent was supplemented with 125 mM of MeOH the yield was increased to
0.968 ± 0.144 mM. This indicates that isoprene production from wastewater is primarily
determined by the available substrate rather than environmental stressors. These results
demonstrate that engineered methanogens are viable as a drop-in additive to wastewater
treatment, and that the rate limiting factor for isoprene production is the rate at which
the syntrophic microbial community can produce metabolites necessary for methanogen
growth. By stimulating the microbial community, higher titers of bioisoprene production
may be achieved.

Methanogens are a compelling source of renewable bioproducts due to their high sub-
strate to product ratio efficiency. Here, we have demonstrated that with minor adaptation,
it is possible to drop-in engineered methanogens to existing wastewater environments
and attain value-added products in addition to the processing of wastewater. Due to
existing capabilities for methane capture, many wastewater treatment facilities are already
equipped with the infrastructure necessary for the capture of gaseous products such as
isoprene. Separation of isoprene from biogas would require additional investment in biogas
refining. However, isoprene separation from biogas streams is expected to be compatible
with existing biogas upgrading technologies that are used to separate CO2 and enrich
methane content to produce renewable natural gas. Our results suggest there may be
promising potential for utilizing methanogens as a platform for low-cost production of
synthetic materials without expensive feedstocks or extensive modification of existing
renewable natural gas facilities.
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