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Abstract—Risk management is a crucial aspect in decision
making under uncertainty. This paper proposes a hybrid risk
management approach for stochastic programming-based
portfolio optimization problems. The proposed approach
consolidates the classical Markowitz mean-conditional value at
risk (CVaR) model, which is the most commonly used approach
in power and energy applications, and the stochastic dominance
(SD) concept. A case study on the risk management of a wind
power producer’s stochastic bidding strategy in the electricity
market is performed to demonstrate the superiority of the
proposed approach over the commonly used mean-CVaR and the
SD-based risk management approaches.

Index Terms—Conditional value at risk (CVaR), portfolio
optimization, risk management, stochastic dominance (SD),
stochastic programming.

I. INTRODUCTION

Problems of decision-making with uncertainties are
common in different areas, such as economics, finance, and
engineering, e.g., decision making of electricity market
participants with uncertain information about market clearing
price, demand, etc. A rational decision-making model should
account for those uncertainties when making/recommending
decisions. Such problems can be modelled using the stochastic
programming approach [1], with the uncertain input
parameters represented as scenarios, which are the plausible
sets of input parameter values with associated probabilities of
occurrence. A common approach to formulating a stochastic
programming problem was to maximize the expected value of
the objective’s distribution (i.e., portfolio). However, this
approach does not account for the objective’s risk, which is
defined to be the possibility that the value of the realized
objective deviates adversely from what is expected.

Risk management was first proposed by Markowitz in his
mean-variance stochastic programming model [2], [3], which
optimizes the expected value of the objective’s distribution
while minimizing the risk associated with the objective’s
distribution that is represented by its variance. Since then, it
has been agreed that the performance of the objective’s
distribution should be measured in two dimensions: expected
value and risk; and many risk measures, in addition to
variance, have been proposed and used in the literature. The
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most commonly used risk measures are value at risk (VaR)
and conditional value at risk (CVaR), which is recognized to
be superior to VaR in stochastic optimization applications [4].

An alternative approach based on the stochastic dominance
(SD) concept for risk management in stochastic programming
was proposed in [5]. In that approach, SD constraints (SDCs)
were added to the problem’s set of constraints to impose a
minimum tolerable “reference” distribution, which is called
“benchmark distribution” or simply “benchmark™. Those
SDCs modify the problem’s feasible region such that the
problem’s optimal distribution outperforms or dominates the
benchmark imposed by the user. The SDCs can have different
orders from the most restrict first order to infinite order.
However, the second order is most applicable to describe the
preferences of rational and risk-averse decision-makers [6].
The benchmark should be selected properly to avoid any
problem infeasibility that may occur. The benchmark selection
problem, which has been the major obstacle to using this
approach in risk management, was addressed in [7].

The mean-CVaR model only optimizes the expected value
of the objective’s distribution and the defined CVaR tail. In
contrast, the SD approach can manage different parameters of
the objective’s distribution, but cannot guarantee the
optimality of the CVaR tail. To leverage the performance of
these two approaches, this paper proposes a hybrid approach
that consolidates CVaR and SD for the risk management in
stochastic programming problems. By using the proposed
approach, the trade-off between the objective’s expected value
and the CVaR —a tail is optimized subject to the added
second-order SDCs that can manage other parameters of the
objective’s distribution directly, e.g., the worst scenario value.
A case study on the risk management of a wind power
producer’s optimal bidding strategy in the electricity market is
carried out to demonstrate the superior performance of the
proposed hybrid risk management approach over the
commonly used mean-CVaR approach and the SD approach.

The remainder of the paper is organized as follows. Section
II presents the mathematical formulation of the proposed
hybrid risk management approach. Section III presents a case
study of the proposed approach for generating the optimal
bidding strategy of a wind power producer in the electricity
market in comparison with the mean-CVaR and the SD-based
risk management approaches. Section I'V concludes the paper.
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II. PROPOSED HYBRID RISK MANAGEMENT APPROACH

The proposed hybrid risk management approach, as
illustrated in Fig. 1, can be applied for multistage linear
stochastic programming problems. For the sake of simplicity,
a general two-stage stochastic program is considered.

A. Two-Stage Risk-Neutral Problem

The two-stage risk-neutral stochastic programming
problem can be expressed in the following general form [1]:
Maximize c¢'x + Z T(w)q(w) "y(w) ()

xy(w)

wEN
Subject to:
Ax=b 2)
T(w)x + W(w)y(w) = h(w) ,Vw € N@B3)
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where x and y(w) are the vectors of the first- and second-
stage decision variables, respectively; ¢, q(w), b, h(w), A,
T (w), and W (w) are the known vectors and matrices; w is the
index of the problem’s scenarios and belongs to the scenario
set 2; and (w) is the probability of Scenario w.

B. Two-Stage Problem with Risk Management

By using the proposed hybrid approach to manage the risk
of the problem (1)-(4), the problem is reformulated as:
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where 1 and s(w) are auxiliary decision variables related to
the CVaR term; «a is the per-unit confidence level in the range
[0, 1] that defines the CVaR—a tail size to be managed; [ is
the risk-aversion parameter in the range [0, 1] that manages
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Fig. 1. Schematic diagram of the proposed CVaR and SD hybrid approach
for the risk management in stochastic programming.

the trade-off between the expected value and the CVaR—a tail
of the objective’s distribution; k(v) and t(v) are the prefixed
value and probability, respectively, of the benchmark’s
scenario v; Y is the set of the benchmark distribution’s
scenarios; n(w, V) is an auxiliary decision variable related to
the second-order SDCs. Constraints (6)-(8) are equivalent to
the risk-neutral problem’s constraints (2)-(4). Constraints (9)
and (10) linearize the CVaR term in the objective function (5)
[8]. Constraints (11)-(13) are the second-order SDCs, which
impose a predefined benchmark to be outperformed by the
optimal objective’s distribution. In the problem (5)-(13), the
decision maker’s risk preference is defined by «, 5, and the
benchmark distribution {(k(v), 7(v)), Vv € Y } whose values
are determined subjectively, based on the risk preference of
the decision maker, within their predetermined ranges.

C. Proposed Hybrid Approach vs. Mean-CVaR Approach

The most common approach for the risk management in the
stochastic ~ programming problems in power system
applications is the mean-CVaR approach, which is represented
by the problem (5)-(10). Basically, the mean-CVaR approach
has two objectives: maximizing the expected value of the
objective’s distribution and minimizing the CVaR— « tail of
the objective’s optimal distribution. However, the mean-CVaR
approach does not manage directly other parameters of the
optimal objective’s distribution, such as the worst scenario.
On the other hand, the second-order SDCs only guarantee that
the optimal objective’s distribution outperforms the imposed
benchmark, but does not guarantee the minimization of the
CVaR— a tail. The proposed hybrid approach combines the
CVaR and SD approaches to facilitate the optimization of the
expected value of the objective and the CVaR— « tail, while
managing directly other parameters of the objective’s
distribution by satisfying a set of second-order SDCs. For
instance, the worst scenario of the benchmark, imposed by the
second-order SDCs, is a minimum limit that cannot be
exceeded by the worst scenario of the optimal objective’s
distribution. Hence, the proposed approach has extra features
over the mean-CVaR approach which could be crucial for the
decision-makers in some applications.

III. A CASE STUDY OF WIND POWER BIDDING PROBLEM

The optimal bidding problem of a wind power producer in
a pool-based electricity market is used as an example to
demonstrate the superior performance of the proposed hybrid
risk management approach for stochastic programming
problems. The wind power producer participates in the hourly
day-ahead and balancing (or real-time) markets that are
cleared 24 hours and one hour before the energy delivery,
respectively. Any positive or negative generation deviation
from the day-ahead market commitment should be covered
through the participation in the balancing market.

The objective of the problem is to maximize the expected
profit from trading in the day-ahead and balancing markets,
while managing the risk caused by the three uncertainties
considered: wind power generation, day-ahead market clearing
price, and balancing market clearing price.
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A. Bidding Model for the Wind Power Producer with the
Proposed Hybrid Risk Management Approach

The bidding problem of the wind power producer that
adopts the proposed hybrid risk management approach is

formulated as follows:
No
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where N, is the number of problem’s scenarios; A2 and A7, are
the day-ahead and real-time clearing prices in Scenario w,
respectively; W2 is the optimal power offer in the day-ahead
market in Scenario w ; W2¢ is the actual wind power
production in Scenario w; and W™ is the maximum wind
power generation capacity. The objective function (14)
maximizes the expected revenue from trading in the day-ahead
and balancing markets, while minimizing the CVaR— « tail of
the objective’s distribution. Constraint (15) limits the bidding
capacity to the maximum wind power generation capacity.
Constraint (16) forces a non-decreasing bidding curve.
Constraint (17) represents the non-anticipativity conditions of
the first-stage decisions. Constraints (18)-(19) are related to
the CVaR term in the objective function (14). Constraints
(20)-(22) are the second-order SDCs.

B. Data

A wind farm with the total installed capacity of 80 MW is
considered. The historical data of wind power generation and
market prices is obtained from the Southwest Power Pool
(SPP) market. The autoregressive integrated moving average
(ARIMA) model and the scenario generation and reduction
methods [9] are applied to represent each random variable,
including wind power generation, day-ahead price, and real-
time price by five scenarios. MATLAB and Gurobi are used to
code and solve the problem, respectively. All computations
are carried out on a Windows-PC with a 3.4 GHz Core i7 CPU
and 16 GB RAM, and the execution time was less than 10
seconds for each of the tried cases.

C. Results

The optimal bidding strategies of the wind power producer
are obtained by using the risk-neutral model and the models

Table I: Values of risk management parameters for different models.

Risk management parameters
Cases a«lp Benchmark

E e
1 |Risk-neutral | Problem | / | 0 ,
2 |[Mean-CVaR| (14)-(19) [0.3]0.3 #
3 SDCs i/ Bl 1(v) 1 / /
4| CVaR+SD | Problem [0.3]0.3 k(v)| -1000 / /
s|_sDCs ||/ |/ [, [z(»] 005 [06]035
6| CVaR+5D 03|03 k(v)| -800 0 | 200

Table II: Parameters of the optimal objectives’ distributions obtained from
different models in Table I.

: Expected| Worst |Expected value _
i value |scenario | of negative tail Qoiedi 3
1 |Risk-neutral 854.17 | -2784.6 -283.27 -269 43
2 [Mean-CVaR 813 -2251 -832 0.39
3|SDCs, Bl 674.6 -1000 -51.3 5747
4 |CVaR+SD. Bl | 663.2 -1000 -22.96 63.4
5|8DCs, B2 643 9 -800 -26.8 693
6 |CVaR+5D B2 | 6358 -800 -14.64 74.84
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Fig. 2. Cumulative distribution functions (CDFs) of the optimal objectives’
distributions for 24 hours of the cases 1. 2, 3, and 4, along with the CDF of
the imposed benchmark B1.
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Fig. 3. CDFs of the optimal objectives’ distributions for 24 hours of the
cases 1, 2, 5, and 6, along with the CDF of the imposed benchmark B2.
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with three different risk management approaches for six cases.
Table T lists the model parameters of the six cases. Table II
compares the parameters of interest for the optimal objectives’
distributions’ obtained from the different models listed in
Table I for a typical hour. As the risk-neutral model does not
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consider risk management, it has the highest risk and the
highest expected value as well. The worst scenarios of the
objectives’ distributions in the cases 3 to 6 that use SDCs are
directly managed by the worst scenario of the corresponding
benchmark imposed. Meanwhile, the expected value of the
negative tail of the optimal objective’s distribution is
effectively managed in the cases 3 to 6 when using the SDCs.
Moreover, compared to the cases 1, 3, 5, better CVaR—0.3
values are obtained in the cases 2, 4, and 6, respectively, when
the CVaR is incorporated in the risk management.

To further demonstrate the risk management performance,
the optimal objective functions’ distributions of 24 hours of
the six cases in Table I are shown in Figs. 2 and 3. As
expected, for the cases 3, 4, 5 and 6, the worst scenarios of the
optimal distributions do not exceed the worst scenario of the
corresponding benchmark imposed. Moreover, the proposed
approach effectively manages the negative and CVaR-0.3
tails simultaneously in the cases 4 and 6.

To further compare the three different risk management
approaches, the effect of changing the values of the risk
management parameters @ and 8 and the benchmark on
different parameters of the obtained optimal objective’s
distributions is studied. Different combinations of a = [0.05,
0.15, 0.25], # =[0:0.01:1], and a one-scenario benchmark with
k(1) = [—2686:50:0] are applied to the corresponding risk
management models. For each distribution of the obtained
optimal objective, three parameters of interest are calculated:
the expected value, the CVaR —a value, and the worst
scenario’s value. Fig. 4 depicts the values of these parameters
of the obtained optimal objective’s distributions versus the
corresponding risk management parameters.

For the mean-CVaR model (the first row in Fig. 4), a small
change in the value of f may lead to a significant change in
the expected value and/or the worst scenario’s value. For
example, a 0.01 change in 8’s value leads to more than $1000
change in the value of the worst scenario. Unlike the expected
value and worst scenario’s value that have abrupt changes, the
CVaR—a value improves smoothly with the increase of the
value, except for the occurrence of some noticeable ripples
due to the linearization of the CVaR term in (14). In contrast,
in the SD-based model (the second row in Fig. 4), the smooth
change of the one-scenario benchmark’s value k(1) leads to
smooth changes in all of the three depicted parameters of
interest. The k(1) value and the worst scenario’s value are
always equal. However, the CVaR—a value does not change
proportionally with the k(1) value, which means that k(1)
value cannot be used directly to manage the CVaR—a value.

The proposed hybrid approach with a one-scenario
benchmark optimizes the expected and CVaR—a values while
managing directly the worst scenario’s value. Hence, it can
produce unique results of the optimal objective’s distributions
or combining the parameters of the optimal objective’s
distributions compared to those of the mean-CVaR and SD
approaches. This is visually derivable from the 3D subfigures
in Fig. 4 in which each colored surface corresponds to the
output of the proposed hybrid approach. Meanwhile, the
results of the mean-CVaR model are those in the wvertical
cross-section at the lowest value of k(1) (i.e., —2686); and the
results of the SD-based model are those in the vertical cross-
section at § = 0. In the subfigures of expected value and

CVaR—a, the surfaces cover the values that are not covered in
any of the corresponding vertical cross-sections. Again, the
ripples/spikes in the CVaR —a subfigures are due to the
linearization of its term in (14). For the worst scenario
subfigures, the covered set of values by each surface is equal
to the combination of the values’ sets in the corresponding
vertical cross-sections. Hence, the unique combinations of the
expected, CVaR—a, and worst scenario values are obtainable
by the proposed approach but cannot be obtained by the mean-
CVaR or the SD-based model. Such unique combinations
cause disruptions/perturbations to the problem’s efficient
frontier, defined based on the mean-CVaR model or the SD-
based model, by introducing new points or outperforming
existing points.

Thus, by flexibly shaping the objective’s distribution and
managing different parameters of the objective’s distribution,
the proposed approach is superior to the mean-CVaR and the
SD approaches for portfolio risk management.

IV. CONCLUSION

This paper proposed a hybrid risk management approach
for portfolio optimization with uncertainty that was modeled
as a stochastic programming problem. The proposed approach
consolidates the commonly used mean-CVaR model and the
SD-based model to leverage their performance simultaneously
and achieve a superior risk management performance. The
proposed approach enabled the optimization of the expected
value of the objective and the CVaR- « tail, while managing
directly other parameters of the objective’s distribution (e.g.,
worst scenario value) specified through the benchmark
imposed by a set of second-order SDCs. The optimal bidding
problem of a wind power producer in the electricity market
was used as an example to demonstrate the performance of the
proposed approach in comparison with the mean-CVaR and
SD-based models. Results showed the superior performance of
the proposed hybrid approach in risk management.
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Fig. 4. The effect of different risk management parameters «, 8, and k(1) on the expected value, CVaR—a value, and worst scenario’s value of the optimal
objective’s distributions obtained from the mean-CVaR model, the SD-based model, and the proposed hybrid risk management approach for a typical hour.
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