Thus article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 1

A Hybrid Electricity Price Scenario Generation
Method for Stochastic Virtual Bidding in the
Electricity Market

Dongliang Xiao, Member, IEEE, and Wei Qiao, Fellow, IEEE

Abstract—Stochastic optimization can be used to generate
optimal bidding strategies for virtual bidders in which the
uncertain electricity prices are represented by using scenarios.
This paper proposes a hybrid scenario generation method for
electricity price using a seasonal autoregressive integrated
moving average (SARIMA) model and historical data. The
electricity price spikes are first identified by using an outlier
detection method. Then, the historical data are decomposed into
base and spike components. Next, the base and spike component
scenarios are generated by using the SARTMA- and historical
data-based methods, respectively. Finally, the electricity price
scenarios are obtained by combining the base and spike
component scenarios. Case studies are carried out for a virtual
bidder in the PJM electricity market to validate the proposed
method. The optimal bidding strategies of the virtual bidder are
generated by solving a stochastic optimization problem using the
electricity price scenarios generated by the proposed, the
SARIMA, and a historical data-based method, respectively. Case
study results show that the proposed method is better than the
SARIMA method in preserving statistical properties of the
electricity price in the generated scenarios and is better than the
historical data-based method in predicting the future trend of the
electricity price and, therefore, can help the virtual bidder earn
more profit in the electricity market.

Index Terms—Electricity market, electricity price, scenario
generation, stochastic optimization, virtual bidding.
I NOMENCLATURE
A. Indices and Sets:

t Index of time periods, running from 1 to 7.

w Index of scenarios, running from 1 to Q.

g Index of the autoregressive terms in an SARIMA
model, running from 1 to G.

h Index the moving average terms inan SARIMA
model, running from 1 to A.

i Index of the seasonal autoregressive terms in an
SARIMA model, minning from 1 to P.

Jj Index of the seasonal moving average terms in an
SARIMA model, munning from 1 to Q.

m Index of the elements in a dataset, running from 1
to M.
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A2 /AR Set of the scenarios for day-ahead (DA)/real-time

(RT) electricity price in a time period t.

ARP JABY Set of the base component scenarios for DA/RT
electricity price in a time period t.

AZs/AZs Set of the spike component scenarios for DA/RT
electricity price in a time period t.

XP/XR  Set of historical DA/RT electricity price data.

XPb /XRPb Set of the base component of historical DA/RT
electricity price data.

XPs /xR Set of the spike component of historical DA/RT
electricity price data.

B. Decision Variables:

PYT/PYD Power sold/bought by a virtual bidder in the DA
market for a scenario w in a time period ¢ when an
incremental/decremental bidding curve is used.

C. Parameters and Constants:

pVmax  Maximum bidding capacity of a virtual bidder.

Priw Probability of the occurrence of a scenario w in a
time period t.

AP, /AR, DAJ/RT electricity price for a scenario w in a time
period 7 in the scenario set A2 /AR

ARE/ARE The wth base component scenario of the DA/RT
electricity price scenario set AZ? /AR?

APs JARs The wth spike component scenario of the DA/RT
electricity price scenario set ADS /ARS

x2/xE  The mth DA/RT electricity price data in the

historical dataset X2 /X R
x2P /xEP The mth base component of the DA/RT electricity
price data in the historical dataset X?? /XR?

x2s/xBs The mth spike component of DA/RT electricity
price data in the historical dataset X?< /X s

zD /zR  The mth binary parameter in the vector Z2/ZR,
which is equal to 1 if x2 /x® is identified as a
price spike, and is equal to 0 otherwise.

ZP/ZR  The vector used to mark the price spikes in the
dataset X2/ XR.

S Seasonality order in an SARIMA model.

d Differentiation order in an SARIMA model.

o The gth autoregressive parameter in an SARIMA
model.

6y The hth moving average parameter in an
SARIMA model.

D Seasonal differentiation order in an SARIMA
model.

P, The ith seasonal autoregressive parameter in an
SARIMA model.
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0; The jth seasonal moving-average parameter in an
SARIMA model.

ePl/eEl Independent error term of a base component
scenario w for the DA/RT electricity price in the
independent error vector EP? /EF?.

EP? /ERP Independent error vector of the base component
scenario sets for the DA/RT electricity price.

gDb /eRb Dependent error term of a base component
scenario w for the DA/RT electricity price in the
dependent error vector EP?/EF?.

EPP /ERP Dependent error vector of the base component

scenario sets for the DA/RT electricity price.

a Skewness of a dataset.
B Kurtosis of a dataset.
Kypv yro Variance-covariance matrix of the base

component datasets X2 and X*?.
X,pb o Variance of the dataset XPP.

yob yrs Covariance of the base component datasets X°°
and XRP.
Lﬁgb ADb Transformation matrix used for correlating the

error terms of the base component scenario sets
_ APPand AP
XP/XR  Sample mean value of the dataset X? /X%.
p.

II. INTRODUCTION

OST wholesale electricity markets in the United States

have a two-settlement structure, which includes a DA and
an RT markets. In the DA market, the participants, such as
power producers and load serving entities, submit bids one day
before the operating day based on their DA schedules; the
market is then cleared and the cleared powers are settled at DA
prices. In the RT market, the power deviations from the DA
schedules are settled at RT prices on the operating day [1]. In
addition to the market participants that have physical assets on
the demand or generation sides, pure financial participants can
also buy or sell power at DA prices in the DA market and their
DA commitments are settled at RT prices in the RT market on
the next day. This kind of transaction is called virtual bidding
or convergence bidding; and these pure financial participants
are referred to as virtual bidders whose profitability is related
to the difference between DA and RT electricity prices [2].
Virtual bidding was first used in the PIJM market in 2000 and
currently is available in most U.S. electricity markets [3].

The main purposes of allowing virtual bidders to participate
in electricity markets are to increase the liquidity and reduce
price difference between DA and RT markets. The benefits
and drawbacks that virtual bidding may bring to the market
were discussed in [4]. By analyzing the historical data in
California electricity market, the work [5] and [6] concluded
that virtual bidding could reduce the difference between DA
and RT electricity prices. However, virtual bidding might not
improve market efficiency if used by a financial transmission
right holder [7] or a cyber attacker [8]. Additionally, the
impact of virtual bidding on market efficiency depends on the
forecast accuracy of the virtual bidder. The study in [2]
showed that the virtual bidders with perfect forecast results
could improve the efficiency of electricity markets. However,
the authors of [9] addressed that the virtual bidders with bad
forecast results would decrease the total social welfare and

should be screened out of the electricity markets. Thus, the
virtual bidders” forecast accuracy affects both the profitability
of virtual bidding and the efficiency of electricity markets.

The stochastic optimization technique can be used to
generate optimal bidding strategies for virtual bidders while
addressing the electricity price uncertainties via scenarios. In
this circumstance, the forecasted hourly electricity price is
represented by a set of scenarios with certain probabilities
instead of a deterministic value, and the accuracy of the
generated scenarios affects the profit of the virtual bidder
significantly. In the literature, scenario generation methods
based on statistical models [10]-[16] or historical data [17]
have been reported for power system applications. In [10]-
[12], the SARIMA model was used to generate scenarios for
electricity price and renewable energy productions,
respectively. In [13], the wind power scenarios were generated
based on a multivariate normal distribution and the variability
of the wind power was characterized by a range parameter in
the covariance function. In [14], a generalized dynamic factor
model was used to generate dependent load and wind power
scenarios. In [15], a quantile regression forest model was
employed to generate scenarios for wind, photovoltaic, and
small hydro power productions. In [16], Weibull distribution
was considered to generate wind speed scenarios, and transfer
component analysis was utilized to improve the effectiveness
of the scenario generation method.

Statistical models, such as SARIMA, can usually provide
satisfactory scenario generation results if the historical data are
stable and normally distributed [12]. However, the electricity
price data are usually volatile and contain spikes caused by
unexpected factors, such as power outages [18] and strategic
behaviors of market participants [19]. In the United States, the
average annual volatility of electricity price is 359.8%, which
is much higher than the price volatility of natural gas (48.5%),
financial assets (37.8%), metals (21.8%), and agriculture
(49.1%) [20]. Moreover, there are much more positive price
spikes than negative ones. Thus, the distribution of the
electricity price data is asymmetric and very different from a
normal distribution. The scenarios generated by the commonly
used statistical models may not be able to capture and
asymmetry and spikes of the electricity price.

To avoid the drawback of statistical models, the work [17]
generated electricity price and wind power scenarios by using
their historical data in different time periods directly for the
stochastic wind power bidding. The generated scenarios were
assigned with an equal probability. However, this method does
not sufficiently utilize temporal correlations between historical
data, which are considered in the SARIMA model and shown
to be helpful for predicting the future trends of uncertain
parameters [12]. Thus, the historical data-based method may
not forecast the future trend of uncertain electricity price as
accurately as the SARIMA-based method.

This paper proposes a hybrid scenario generation method
that utilizes the temporal correlations of historical electricity
price data without the need for any assumption of the historical
data’s distribution, such as the normal distribution assumption
in the SARIMA-based method. In the proposed method, the
spikes contained in the historical electricity price data are first
identified. Then, the historical electricity price data is
decomposed into base and spike components. Next, the
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SARIMA method is used to generate the base component
scenarios; and the spike component scenarios are generated
from the historical data of the spike components directly.
Finally, the base and spike scenarios are combined and used
for the stochastic optimization problem for the virtual bidder.
The main contributions of this paper are the following:

1) A hybrid method of generating electricity price scenarios
based on the SARIMA model and historical data is proposed.
By decomposing the historical electricity price data into base
and spike components and generating their scenarios using
different methods separately, both the trend and variations of
the future electricity price can be captured in the generated
scenarios without the need for any assumption of the historical
data’s distribution. The improved scenario generation by using
the proposed method can help the virtual bidder earn more
profits in the electricity market.

2) The statistical properties of the scenarios generated by
different methods are studied in detail. It is found that the
scenarios generated by the proposed method can characterize
the volatility, asymmetry, and heavy tails of electricity prices
more accurately than those generated by the SARIMA-based
method without outlier detection.

The remainder of this paper is organized as follows. Section
III presents the stochastic optimization problem of generating
optimal virtual bidding strategies in electricity markets.
Section IV presents the proposed hybrid electricity price
scenario generation method. Section V compares different
scenario generation methods. Section VI presents results of
case studies. Section VII concludes the paper.

III. STOCHASTIC VIRTUAL BIDDING STRATEGY

A. Market Framework

Fig. 1 shows the typical time frame of a two-settlement
electricity market widely used in the U.S [21]. On the day
before the operating day, virtual bidders submit incremental
and decremental virtual bids before the submission closure
time for the DA market; and both the cleared virtual bids and
prices are determined by the DA market clearing process. On
the operating day, the RT power balance is ensured through a
RT market clearing process; and the deviations caused by the
DA virtual bids need to be settled at RT electricity prices on
this trading floor. To make the virtual bidding profitable in the
electricity market, the virtual bidders need to forecast DA and
RT electricity prices accurately using the latest historical data.

In confrast to the conventional power producers or

|Onedaybeforeoperaxingday|
Submit DA virtual DA electricity
bids DA market clears prices are ’
P A "’—Hr determined
HENNNERRRRRRRERERENEEIE
RT market clears for eachhour

A
e N

Fig. 1. Time frame of a typical two-settlement electricity market.

electricity retailers that have physical resources in the power
grid, the virtual bidders are pure financial participants without
any physical resources. The maximum bidding capacity of a
virtual bidder is determined by the available credit in its
trading account, and a virtual bidder with higher credit would
have a larger virtual bidding capacity.

B. Stochastic Optimization Model for Virtual Bidding

In this paper, the virtual bidder is assumed to be a price-
taker in the electricity market and its bidding capacity is not
large enough to influence DA or RT electricity price. The
mathematical model for optimizing the expected profits of a
virtual bidder in a time period 7 is as follows:

_ 0 . D R \pVI R D \pVD
Pﬁ% Ty = Y=t Prew[(Atw — Adw)Pew + (Aew — Afw) Py

(1)
Subject to:

0<P vto (2)
0< PP vtw (3)
P + Py, < PV™e%, vt (4)
Pl =Pl vt 0,0 28, =22, (5)
PP =P!% vt,w,w': 13, =22, (6)
(28, — 22 ) )(PXI —P!l) =0, vt,w (7)
(22, — 22 )(PYP —P/7) < 0,vt,w (8)

where the objective function is the expected profit of the
virtual bidding in the time period #; Constraints (2)-(4) limit
the virtual bidding capacities in the DA market; Constraints (5)
and (6) ensure that the scenarios with the same DA electricity
price have the same DA virtual bid capacity on the bidding
curves; and Constraints (7) and (8) constitute the non-
decreasing and non-increasing properties for the incremental
and decremental bidding curves, respectively.

In the stochastic optimization problem of the virtual bidder,
since the expected profit is calculated based on the scenarios
of uncertain DA and RT electricity prices, the scenario values
significantly affect the profitability of the DA virtual bidding
strategy obtained by solving the optimization problem. If the
future trend or some probabilistic properties of the uncertain
prices cannot be captured by the generated scenario sets A? =
(22,3, and AR = {AR }{}_, sufficiently, the expected profit
calculated by using (1) will deviate significantly from the
actual profit. This circumstance indicates that the objective
function and constraints containing the uncertain parameters of
the stochastic optimization problem are incorrect so that the
generated DA bidding strategy may not help the virtual bidder
eam profit effectively in the electricity market.

Additionally, as shown in (1), a virtual bidder’s profit
depends on the absolute value of the difference between DA
and RT prices. If DA electricity price is close to RT electricity
price, the virtual bidder could not earn much profit no matter
what scenario generation method is adopted, because there are
no arbitrage opportunities in DA and RT electricity markets.

IV. PROPOSED HYBRID SCENARIO GENERATION METHOD

This section presents the overall framework and detailed
procedure of the proposed hybrid scenario generation method
for electricity price. The generated scenarios are used in the
stochastic optimization problem (1)-(8) given in Section ITI.
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/ Input: Historical DA and RT electricity price datasets ¥”and X*® /

| Step 1: Electricity price spike identification using (9) and (10) |

Price spike vectors Z%and z%

A4
[ Step 2: Decomposition of historical datasets using (11) and (12)

Spike component datasets:
XD; and XR:

Base component datasets:
Xﬂ!h and Xﬁb

Step 3: SARIMA-based scenario Step 4: Historical data-based
generation using (13)-(17) scenario generation

Base component scenarios: Spike component scenarios:
D b Ds Rs
AP and A Alsand A

| Step 5: Combination of base and spike component scenarios using (18)-(20) |

/ Output: DA and RT electricity price scenarios AP and A} /

Fig. 2. Framework of the proposed hybrid scenario generation method.

A. Overall Framework

Fig. 2 shows the flowchart of the proposed method. The
scenario sets of the DA electricity price A2 = {A2,}_, and
RT electricity price Af = {A%,}2_, are generated jointly based
on the historical DA electricity price dataset X? = {x2}¥_,
and RT electricity price dataset X% = {x2}_  while
considering the dependency between DA and RT prices.

First, the spikes contained in the historical electricity price
datasets are identified using an outlier detection algorithm.
Then, the original historical DA price dataset X? is
decomposed into a base component dataset X°? and a spike
component dataset XP<. Similarly, the original historical RT
price dataset X% is decomposed into a base component dataset
XRP and a spike component dataset X®°. Next, an SARIMA-
based method is designed to generate the base component
scenario sets AP? and AB?; and the spike component scenario
sets AP* and A% are generated from the spike component
datasets directly. Finally, by adding the base and spike
component scenarios, the final DA and RT price scenario sets
A2 and AR are obtained. Each step of the proposed hybrid
method for generating the DA and RT electricity price
scenario sets AP and AR from the historical datasets X and
XR respectively, is presented in detail as follows.

B. Step 1. Identification of Price Spikes

Figs. 3 and 4 provide the histograms of the historical DA
and RT electricity prices for a certain month in the PIM
electricity market, respectively. Some DA/RT electricity price
data patterns deviate significantly from their mean or median
value and, thus, can be regarded as price spikes or outliers
from a statistical perspective. Therefore, an outlier detection
method based on the median absolute deviation (MAD) is
designed to identify the price spikes.

Specifically, a data pattern is identified as a spike if it
deviates more than three times the MAD from the median
value of the historical data [22]. The MAD of the dataset X°
can be calculated as follows.

MAD(XP) = 1.4826 median(|X? — median(XP))) (9)
where median() is the function of calculating the median of a

dataset. Then, each DA electricity price spike is identified and
marked using a binary parameter z2 as follows.

20 4D &) BT 100 120 140 160
DA alectricity price (S/NMwWh)

Fig. 3. Histogram of the DA electricity price for a certain month.

o 50 100 150 200 250 300 350
RT elactricity price {$/MWh)

Fig. 4. Histogram of the RT electricity price for a certam month.

D . | < D
- {0, |x;, — median(X”)| < 3MAD(X™) (10)

m =11, |2 — median(XP)| > 3MAD(XP)

where z2 is equal to 1 if the mth data pattern is identified as a
price spike. Finally, a vector ZP = {z23}¥ . can be obtained to
mark all the DA electricity price spikes in the dataset X?.

The RT electricity price spikes in the dataset X® can be
identified using the method similar to (9) and (10) and marked
by another vector ZR = {zE}M_, . The proposed outlier
detection method is based on MAD instead of standard
deviation, because MAD is robust to outliers and can be used
to measure the dispersion of the data more accurately than
standard deviation.

C. Step 2: Decomposition of Historical Dataset

After the price spikes have been identified, the historical
DA price dataset X2 = {x2}M_, is decomposed into a base

component dataset X?? = {xPP}¥_ and a spike component

dataset XPS = {x25}¥_. . For each historical price data pattern
identified as a spike, the base component is equal to the
median value of the historical data, and the spike component is
equal to the original price data pattern minus the median value.
For each historical data pattern that is not identified as a spike,
the base component is equal to the original data pattern, and
the spike component is zero. The formulas for calculating the
base and spike components of the historical DA electricity
price data are expressed as (11) and (12), respectively.

D oD _
pb _ (Xm itz =
m {median(XD), ifzp = ()
0 if zy, =
ps={ 2 12
m {x,% — median(X?), if z2 = (12)

The historical RT electricity price dataset X® is also

: Rb _ ¢, RD\M
decomposed into a base component dataset X% = {x5" }in=1
and a spike component dataset X% = {xZ)M_, using

formulas similar to (11) and (12), respectively.

D. Step 3: Base Component Scenario Generation

To generate scenarios for multiple uncertain parameters by
using statistical models, the joint probability distribution needs
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to be estimated first, which is generally a complex work.
However, if the uncertain parameters are assumed to follow a
multivariate Gaussian distribution, the scenario generation
process can be simplified by using the univariate SARIMA
model and variance-covariance matrices [12].

The base component scenarios of the DA electricity price
AP in a certain time period ¢ can be generated using the
SARIMA model, which are expressed as follows.

(1-%5_,¢,B9)(1 - XL, #B5)(1 - B)4(1 -
H:l BhBh) (1 - E?:l Qijs)EtD\E

BS)P 132

—1- (13)

where S is the seasonality order, ¢, ¢, ', ¢ are G
autoregressive parameters; 6,,6,, -+, 8y are H moving average
parameters; ®,,%®,,'::,Pp are P seasonal autoregressive
parameters; and @4, 0, '+, @ are Q seasonal moving average
parameters; 52 represents the forecast error for the scenario
w, which follows an independent normal probability
distribution for the SARIMA model; and B is the backward
shift operator, whose function is given as follows.

BADS = A4 (14)
Based on the historical base component dataset XPP | the
parameters of (13), which include ¢4, ¢;,6), and 6;, can be

estimated by using ‘rhe maximum likelihood method. To
generate a scenario A22 in the time period 7, an error term £22
needs to be first sampled from a normal probability
distribution. The scenario ARZ and error term €2 for the RT
price can be generated in a way similar to (13) and (14).

To consider the dependency between DA and RT prices in
the scenario generation process, their correlation is modeled by
using the variance-covariance matrix Kyp» yrp» of the DA price
base component dataset X°? and the RT price base component
dataset XR? expressed as follows.

XyDb wDb LyDb yRb
xDb x xDb x ] (15)

K,pv ,ro =
xDb x
EXDDJXRD EXRDJXRD

where Zypp 4 0o is the variance of XPP, £yrp 4ro is the variance
of XB?, and Zyp» yro is the covariance of XP? and X®?. Then,

the Cholesky decomposition is performed for the variance-
covariance matrix as follows.

_ T
Kyob yro = LA?DJA?bLﬂ?bJAJtJD (16)

where LA?D ADD is the transformation matrix used for

correlating the error terms of the scenario sets AP? and ARP.
Let EPY = [e£l]oy: and ERP = [efl]o.1 be the column
vec‘rors containing () independent error terms of the scenario
sets ADP and ARP respectively. Then, the independent error
vectors EP? and EfPare transformed to be the dependent error
vectors Em’ = [8P)qx1 and EFP = [£R2] 4 as follows.

FDb EDb

[‘tRb ] = Lo \0o [ b

E; t 8 |EY
Then, the SARIMA model (13) is modified by replacing the

independent error term 22 with the dependent error term &52.
Finally, the base component scenario sets AP? = {AP2}_, and

(17)
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AR = (QBbY0 are generated by using the modified
SARIMA model

E. Step 4: Spike Component Scenario Generation

The price spikes in electricity markets can affect the market
participants’ economic benefits significantly. However, since
price spikes are usually caused by some unexpected events in
the power system, the spike component data are usually highly
volatile and difficult to be forecasted using the SARIMA
model. This work proposes to generate the spike component
scenario sets AP* and AR using the samples of the historical
spike component datasets X? and X® in the rth hour,
respectively, i.e., ADS = {10512 _ and ARs = (AR5} where
ADse xPs AR XRS, and Q< M.

F. Step 5. Combination of Base and Spike Component
Scenarios

Since the base and spike component scenario sets generated
in Step 3 and 4, respectively, have the same number of
scenarios, they can be added directly to generate the final DA
price scenario set A? and RT price scenario set A} as follows.

AR = ADP 4 ADs (18)

AR = ABP 4 ABS (19)
Since the sequence of the scenarios in each scenario set is
random, the base and spike component scenarios are combined
randomly. Additionally, since all of the scenarios in A? and AR
are assigned with an equal probability, respectively, the
probability pr;,, of each scenario w of the final DA and RT
electricity price scenario sets is

Pliw =5 (20)
where (1 is the total number of scenarios generated for the

stochastic optimization problem for the virtual bidder.

V. COMPARISON OF EXISTING AND PROPOSED SCENARIO
GENERATION METHODS

The SARIMA- and historical data-based scenario
generation methods have been widely used in practice.
However, both methods have disadvantages when used for
electricity price scenario generation.

For the SARIMA based scenario generation method, both
the error term 22 and the generated scenario AZZ in (13) are
assumed to follow symmetric normal dlsmbutlons, which may
not be correct for actual probability distribution of electricity
price. As shown in Figs. 3 and 4, the DA and RT price data are
asymmetric and have heavy tails and, thus, are different from
normal distributions and cannot be simply characterized by
using mean and variance.

To measure the symmetricity and heavy-tailedness of a
probability distribution, skewness and kurtosis are commonly
used [23]. The skewness a(X?) and kurtosis S(XP) of the
dataset X? are calculated as follows.

31 s (RKD)’

a(XP) = — (21)
(JioHes(h))
p(xP) — T ) (22)

(3 Mes (R F0)7)
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Fig. 5. Scenarios generated by the (a) historical data-based, (b) SARIMA-based, and (c) proposed hybrid scenario generation methods.

In the SARIMA model, since the normal distributions used
for characterizing the error terms are symmetric, their
skewness values are 0. Additionally, since the tails of the
normal distributions have the same shape, their kurtosis values
are the same, which is 3 [23]. However, for the DA and RT
price data shown in Figs. 3 and 4, their skewness values are
2.62 and 5.88, respectively; and their kurtosis values are 11.78
and 44.5, respectively, which are much larger than 3. These
values indicate that the DA and RT price data are asymmetric
and more heavy-tailed than normal distributions. Thus, it is not
accurate to generate the electricity price scenarios by using the
SARIMA method, which cannot characterize some key
statistical properties of the price data correctly.

Compared to the SARIMA method, the scenarios generated
by using the historical data directly can preserve more
statistical properties, such as asymmetry and heavy-tailedness,
of the electricity price, but do not fully utilize the temporal
correlations of the historical data. In contrast, the SARIMA
model (13) considers the temporal correlations of the historical
data of the uncertain electricity price and, therefore, is superior
to the historical data-based method for predicting the future
trend of the uncertain electricity price [12].

The proposed hybrid scenario generation method utilizes the
advantages of both the SARIMA and the historical data-based
methods. On one hand, the base component data is more stable
than the original data. Thus, it is more suitable to use the
SARIMA model to generate the base component scenarios. On
the other hand, the spike scenarios generated by the historical
data-based method preserve more statistical properties of the
historical data without any assumption for its distribution.
Thus, the scenarios generated by the proposed hybrid method
can capture the future trend and preserve important statistical
properties, such as skewness and kurtosis, of the electricity
price, which can help increase the profit of the virtual bidding
strategy obtained by solving the stochastic optimization
problem (1)-(8).

VI. CASE STUDIES AND RESULTS

A. Simulation Setup

The proposed hybrid electricity price scenario generation
method is validated via case studies for a virtual bidder in the
PIM electricity market. The virtual bidder has the maximum
virtual capacity of 30 MW and is assumed fo submit DA
virtual bids at the Eastern Hub in the PIM electricity market.

The hourly DA and RT electricity price data at the trading hub
are publicly available on the PJM website. The historical data
from June 2018 to May 2019 are used for the case studies. For
each operating day, the historical data of the last three months
are used to generate the electricity price scenarios and
stochastic virtual bidding strategies for different hours on the
next day. For instance, the scenarios and virtual bidding
strategies for September 1, 2018 are generated based on the
historical data from June 1, 2018 to August 31, 2018. The
parameters of the SARIMA model are estimated using the
MATLAB econometric toolbox. Since the stochastic
optimization problem (1)-(8) for the virtual bidder is a linear
programing (LP) problem, it can be solved efficiently by using
the Yalmip toolbox [24] and Gurobi in MATLAB [25].

B. Results of the Scenarios Generated by Different Methods

The results of 100 scenarios generated by using the
historical data-based, SARIMA-based, and proposed hybrid
methods in a certain hour are shown in Fig. 5. Fig. 5(a) shows
that there are many positive price spikes in the DA and RT
markets, whose values deviate significantly from the mean
values of the data. For instance, the mean value of the RT
electricity price data in Fig. 5(a) is 51.5 $/MWh; while the RT
price spikes are as high as 329.2 $/MWh, which makes the
distribution of the historical price data pretty asymmetric. In
this circumstance, a statistical model, such as the SARIMA
model, is not capable of fully characterizing the statistical
properties of the data because the error terms in the SARIMA
model (13) are assumed to follow a normal distribution, As
shown in Fig. 5(b), the scenarios generated by the SARIMA
model are symmetric and their maximum deviation from the
mean is much smaller than that in Fig. 5(a). Thus, the
information of the price spikes is lost in the scenarios of Fig.
5(b). When using the proposed hybrid scenario generation
method, some important statistical properties of the historical
data, such as symmetricity and heavy-tailedness, are preserved.
As shown in Fig. 5(c), quite a few DA and RT electricity price
scenarios generated by the proposed method deviate
significantly from the mean values, which is similar to the
result in Fig. 5(a). However, the minimum DA elecfricity price
scenario value in Fig. 5(c) is close to that in Fig. 5(b) but is
lower than that in Fig. 5(a), because the base components of
the scenarios in Fig. 5(c) are generated using the SARIMA
model instead of the historical data.

To further compare the proposed method with the historical
data-based and the SARIMA methods, four key statistical
parameters, including mean, variance, skewness, and kurtosis,
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electricity price scenarios generated by different methods.

of the scenarios generated for each hour of a day over 8
months from June 2018 to May 2019 (called hourly scenarios)
are calculated. First, the mean absolute error (MAE) between
the mean value of the hourly DA/RT electricity price scenarios
generated by each of the three methods and the actual DA/RT
electricity price values over the 8 months is calculated for each
hour of a day. The resulting MAEs of the mean values of the
DA and RT electricity price scenarios generated by the three
different methods for the 24 hours of a day are compared in
Fig. 6. The results show that in most hours, the MAEs of the
historical data-based method are larger than those of the other
two methods that use the SARIMA model. Thus, the SARIMA
and proposed hybrid methods can forecast the future trend of
the DA/RT electricity price, which can be represented by the
mean value of its scenarios generated for each hour, more
accurately than the historical data-based method.

Next, the MAEs of the variance values of the DA/RT
electricity price scenarios generated by the SARIMA method
and the proposed method, respectively, with respect to that
generated by the historical data-based method over the 8
months are calculated for each hour of a day. The resulting
MAEs of the variance values of the DA and RT electricity
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price scenarios generated by the SARIMA and proposed
methods for the 24 hours of a day are compared in Fig. 7.
Similarly, the MAEs of the skewness and kurtosis values of
the DA and RT electricity price scenarios generated by the
SARIMA and proposed methods for the 24 hours of a day are
calculated and compared in Figs. 8 and 9, respectively. The
results show that the MAEs of wvariance, skewness, and
kurtosis of the proposed method are lower than those of the
SARIMA-based method, respectively, in all of the 24 hours.
The results indicate that the scenarios generated by the
proposed method can characterize the volatility, asymmetry,
and heavy tails of the electricity prices more accurately than
those generated by the SARIMA-based method.

C. Results of Different Stochastic Virtual Bidding Strategies

To study the impacts of different scenario generation
methods on the stochastic virtual bidding strategies, 100
scenarios are generated for dependent DA and RT electricity
prices, respectively, by using the three different methods and
are used in the stochastic optimization problem (1)-(8),
respectively. Then, by solving the problem (1)-(8), the optimal
virtual bidding strategies are generated. Fig. 10 shows that the
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TABLEI
ACTUAL PROFITS OF THE VIRITUAL BIDDER OBTAINED BY USING
DIFFEREN] SCENAKIO GENERATION METHODS

Method Historical data | SARIMA | Hybnid
Profit in October 2018 ($) -823.55 -3676.55 | -171.16
Profit in November 2018 (8) 3098.20 623421 | 843.49
Profit in December 2018 (8) 1259.48 27513.91 | 11702.89
Profit in January 2019 (8) 1142261 8402.69 | 19254.58
Profit in February 2019 (8) 287572 1574225 |21922.16
Profit in March 2019 (8) -42.45 -1394.07 | 81.27
Profit m April 2019 (8) -283.34 -753.63 | -151.95
Profit in May 2019 (8) 44546 -1027.54 | 98.74
Total profit of eight months ($) | 42892.71 51041.27 | 5341748

DA virtual bidding curves are different when using different
scenario generation methods. When using the SARIMA
method, the virtual bidder submits a decremental bidding
curve to buy power in the DA market. However, when using
the historical data-based and proposed hybrid scenario
generation methods, the virtual bidder submits incremental
bidding curves to sell power in the DA market.

Based on the generated virtual bidding curves and actual
DA and RT electricity prices, the actual profits of the virtual
bidder are calculated. Table I compares the actual monthly
profits of the virtual bidder from October, 2018 to May, 2019
obtained using the three different scenario generation methods.
The total profits of the 8 months obtained by using the three
different scenario generation methods are all positive. This
indicates that the virtual bidder can make profit in the
electricity market regardless what scenario generation method
is used. When using the proposed method, the virtual bidding
is profitable in 6 months. However, when using the SARIMA
and historical data-based scenario generation methods, the
virtual bidding is only profitable in 4 months. Moreover, the
proposed method outperforms the other two methods in 6 of
the 8 months, and the total profit obtained using the proposed
method is 24.54% and 4.66% higher than those obtained by
using the historical data-based and SARIMA-based scenario
generation methods, respectively. On the other hand, Table I
shows that the historical data-based and SARIMA-based
scenario generation methods outperform the proposed hybrid
method in 2 of the 8 months. This is because certain extreme
scenarios of the uncertain electricity prices caused by some
unexpected events, such as sudden power outages, abnormal
weather, etc. cannot be predicted accurately by using the
historical data or the SARIMA model. In those circumstances,
the actual profits obtained by using the three methods tend to
be random. It should be pointed out that the performance of a

scenario generation method should be evaluated by using a
sufficiently large number of data samples, which are hourly
virtual bidding results over a sufficiently long time, such as 8
months, in this paper. As the result, the proposed method is
shown to be statistically better than the other two methods,
which, however, does not guarantee that the proposed method
is always better than the other two methods in all hours, days,
or months for this virtual bidder’s stochastic decision-making
problem.

VII. CONCLUSIONS

This paper proposed a hybrid electricity price scenario
generation method for generating bidding strategies for virtual
bidders via stochastic optimization. In the proposed method,
price spikes were identified using an outlier detection method;
based on the spikes identified, the historical price data was
decomposed into base and spike components. Then, the base
component scenarios were generated by using the SARIMA
model; and the spike component scenarios were generated by
using the historical data-based method. The final electricity
price scenarios were obtained by adding the base and spike
component scenarios together.

The proposed method was validated and compared with the
historical data and SARIMA-based methods for generating
bidding strategies for a virtual bidder in the PJM market. The
case study results showed that the scenarios generated by the
proposed method could characterize the volatility, asymmetry,
and heavy tails of the historical data more accurately than the
SARIMA-based method. The total profit obtained using the
proposed method was 24.54% and 4.66% higher than those
obtained by using the historical data-based and SARIMA
scenario generation methods, respectively.

In the future work, the proposed outlier detection-based
hybrid scenario generation method can be extended to other
decision-making problems with uncertainties, such as power
system planning and renewable energy trading in electricity
markets. Additionally, a price-maker virtual bidder can be
studied by using a bilevel optimization model in which the
scenarios of other market participants’ bidding strategies can
be generated by using the proposed method and the impact of
the virtual bidder’s bidding capacity on market outcomes can
be analyzed.
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