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Abstract—The increasing integration of distributed generation
(DG) has changed the way modern power systems are planned and
operated. However, new market mechanisms at the retail level are
still needed to effectively integrate energy resources and emerg-
ing market participants in the distribution grid. In this article, a
stochastic market clearing and settlement model with distributed
renewable energy (DRE) utilization constraints is presented. The
proposed model considers the uncertainties associated with the
DRE productionsin the distribution grid and ensures that a certain
portion of the total available DRE at a specified time will be
utilized with a high probability. The problem is formulated as a
chance-constrained two-stage stochastic programming model that
minimizes the expected distribution system operation cost and is
solved through a sample average approximation algorithm. Case
studies are conducted to verify the effectiveness of the proposed
model for different DRE utilization requirements.

Index Terms—Chance-constrained optimization, distributed
energy resource (DER), distribution system market, distribution
system operator (DSO), market clearing.

NOMENCLATURE
Indices and Sets
a Index for the demand bid blocks from the flexible
loads (FLs), running from 1 to N,.
b Index for the energy production blocks from the

dispatchable distributed generation (DDG) units,
running from 1 to N.

i, s Index of iterations in the sample average approxi-
mation (SAA) algorithm.

j.nm Indexes for distribution network nodes.

k Index of market participants, running from 1 to Ny,.
nm, jn Indexes for distribution network branches.

[ Index of time periods, running from 1 to N,.
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w, O Index and set of DRE scenarios, respectively, where
w runs from 1 to N,,.

Qa(n) Set of the decedent nodes connected to node .

Qi(n) Set of the market participants located at node n.

Qpn) Set of the precedent nodes connected to node n.

Input Parameters and Constants

B, € DRE utilization parameters.

A%, . Price of the ath demand bid block of market partic-
o ipant kK during period t.

A Day-ahead transmission locational marginal price

(TLMP) during period ¢.

APED Downward reserve demand price of market partic-
' ipant k during period 1.

A Upward reserve demand price of market participant
, k during period t.

75 - Price of the bth generation offering block of market
o participant k during period .

k2D Downward reserve generation price of market par-
, ticipant k during period ¢.

Ay Upward reserve generation price of market partic-

ipant k during period t.

Al Load shedding cost at node n during period f.
li";ﬂl DRE spillage cost at node n during period .
M Probability of scenario w.
M Large auxiliary constant.
N;, N, Number of iterations in the SAA algorithm.
anx FL capacity of the ath bid block of market partici-
o pant k during period ¢.
PREUmax Upward reserve demand capacity limit of market
, participant k during period .
PPRPmax - pownward reserve demand capacity limit of market
participant k during period .
-~ DDG capacity of the bth offering block of market
participant k during period .
e Maximum active power flow of branch nm.
P Minimum active power flow of branch nm.
Pf}{ ! Nonflexible demand of market participant kK during
period 1.
Plbmax  Downward reserve generation capacity limit of
, market participant k during period .
plUmax  Upward reserve generation capacity limit of market
, participant k during period .
ey Maximum reactive power flow of branch nm.
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iy Minimum reactive power flow of branch nm.

Tjn Resistance of branch jn.

yax Maximum squared voltage magnitude at node n.
Voo Minimum squared voltage magnitude at node n.
Tip Reactance of branch jn.

Random Variables
i DRE production at node n during period ¢ and
scenario w.

Decision Variables — First Stage

EL,k Power sold, if positive, or purchased, if negative,
by the market participant k during period f in the
first stage.

P, om Active power flow of branch nm during period r.

e Power awarded to the ath demand bid block of

o market participant k during period .
e Amount of power purchased in the day-ahead
wholesale market by the distribution system op-
erator (DSO) during period t.
PLED Downward FL reserve capacity of market partici-
, pant k during period .

LR Amount of DRE scheduled by the DSO at node n
, during period 1 in the first stage.

PhR Upward FL reserve capacity of market participant
, k during period t.

25 Power awarded to the bth generation offering block
o of market participant k during period ¢.

PED Downward DDG reserve capacity of market partic-
, ipant k during period 1.

BE Upward DDG reserve capacity of market partici-

pant k during period ¢.
Q Reactive power at the substation during period .

Qtnm Reactive power flow of branch nm during period ¢.

Vin Squared voltage magnitude at node n and period 1.

Ain Lagrange multiplier associated with the power bal-
ance constraint of node n during period £ in the first
stage.

Zpw Auxiliary binary variable used to convert the non-

linear DRE utilization constraint for time ¢ and
scenario w into a set of linear constraints.

Decision Variables — Second Stage

Pi,nm,w Altered active power flow of branch nm in the
second stage during period f and scenario w.
oy Downward FL reserve capacity of market partici-
o pant k deployed in the second stage during period ¢
and scenario w.
poid Upward FL reserve capacity of market participant
o k deployed in the second stage during period ¢ and
scenario w.
Pt Downward DDG reserve capacity of market partic-
o ipant k deployed in the second stage during period
t and scenario w.
PR Upward DDG reserve capacity of market partici-

pant k deployed in the second stage during period ¢
and scenario w.
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poted Total load shedding of market participant k during
o period ¢ and scenario w.

pi‘::}i Total DRE spillage at node n during period ¢ and
scenario w.

dt,nm,w Altered reactive power flow of branch nm in the
second stage during period ¢ and scenario w.

St kw Revenue or cost of market participant k during
period  and scenario w.

Vg nw Altered squared voltage magnitude at node n in the
second stage during period f and scenario w.

Pt n,w Lagrange multiplier associated with the power bal-
ance constraint of node n during period f and sce-
nario w in the second stage.

AE; kw Power sold, if positive, or purchased, if negative, by
the market participant k during period fand scenario
w in the second stage.

ABBREVIATIONS

DDG  Dispatchable distributed generation.

DER  Distributed energy resource.

DG Distributed generation.

DLMP Distribution locational marginal price.

DRE  Distributed renewable energy.

DRFL Downward reserve from flexible loads.

DRPG Downward reserve from dispatchable distributed gen-

eration units.

DSE  Distributed solar energy.

DSO  Distribution system operator.

EDSE Energy from distributed solar energy unifs.

EFL Energy from fixed loads.

FL Flexible load.

NFL Nonflexible load.

SAA  Sample average approximation.

URFL Upward reserve from flexible loads.

URPG Upward reserve from dispatchable distributed genera-
tion units.

uU.s. United States.

[. INTRODUCTION

OWER systems around the world are undergoing signifi-

cant transformations as they move toward increasing decar-
bonization, decentralization, and digitalization. The European
Union, for example, is committed to reducing greenhouse gas
emissions by 40% compared to 1990 levels by 2030 [1]. In the
United States (U.S.), California, New Jersey, and New York have
set goals to generate 50% of their electricity from renewable
resources by 2030 [2]. One example of the move toward de-
centralization is the increasing adoption of distributed energy
resources (DERs), which is impacting the electricity sector in
several ways and contributing to increased power system reli-
ability, resilience, and sustainability. In 2017, different classes
of DERs provided over 45 GW of flexible capacity on the U.S.
summer peak. By 2023, DERs are expected to provide 104 GW
of flexible capacity in the U.S., with nearly 45 GW provided by
distributed solar energy (DSE) units [3]. In addition, the global
DER capacity is expected to reach over 500 GW by 2028 [4].
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In the last few years, there have been many discussions
on the creation of distribution system markets coordinated by
distribution system operators (DSOs), which are envisioned
as entities capable of operating the distribution network and
coordinating the retail electricity market in neutral and trans-
parent ways, similar to how independent system operators and
regional transmission organizations operate the transmission
grids and coordinate the wholesale electricity markets in the U.S
[5]. However, DSOs are expected to facilitate the integration
of DERs and reduce the dependency on centralized energy
resources through decentralized electricity markets at the retail
level. Technical and regulatory discussions on various DSO
constructs that have been proposed in recent years are provided
in [5]-{8].

Some market clearing and settlement mechanisms for DSOs
have been recently presented in the literature. However, most
of the existing models do not consider the uncertainties re-
lated to DERs. In [9], a simple market clearing and settlement
mechanism comprising only fixed and flexible loads (FLs) was
presented. The model in [9] was expanded in [10] and [11] to
incorporate penalty-based pricing mechanisms. A distribution
system energy auction considering flexible and fixed loads and
distributed renewable energy (DRE) units was presented in [12].
However, that work assumed that all DRE units were supported
by energy storage systems, thus neglecting the stochastic nature
of DRE. In [13], a double-sided auction market mechanism for
a distribution system market operator was presented. However,
the market-clearing process was assumed to rely on DRE fore-
casts and, thus, may result in increased operational costs for
the market operator when the DRE forecast errors are high. A
market-clearing mechanism that incorporates Volt/VAR control
and distribution network reconfiguration was proposed in [14].
However, all distributed generation (DG) outputs were assumed
to be known. Other deterministic distribution system market-
clearing models can be found in [15]-[24].

In contrast to the aforementioned deterministic distribution
system market-clearing models, some recent works modeled the
uncertainties related to the DERs in the DSO’s decision model.
In [25], a stochastic distribution system market framework con-
sidering the integration of electric vehicle aggregators was pro-
posed. The work in [26] proposed a distribution system market
clearing that modeled the uncertainties of DRE and a settling
model based onenergy and reserve capacity. However, that work
did not consider reactive power and voltage limit constraints, and
the management of DRE spillage and load shedding. A transac-
tive day-ahead distribution market with variable generation in
which the renewable energy uncertainty was modeled through
the probability efficient point method was presented in [27].
However, that model did not consider the reserve determination,
thus limiting the balancing actions only to generation and load
curtailment, which may result in high operational costs. In
[28], a chance-constrained distribution electricity pricing model
under uncertainty was presented. However, all DRE units were
assumed to be uncontrollable behind-the-meter units that do not
participate directly in the market and cannot interact with DSOs.
In addition, the chance constraints in [28] were used to model
generation and voltage limits only, and the balancing actions

TABLE I
COMPARISON OF THE PROPOSED MODEL WITH PREVIOUS APPROACHES

. . DRE DRE
Reference Formulation Unicertalnty GR | LR Utilization

[9]-[24] Deterministic No No | No No
[25] Stochastic No No | No No
[26] Stochastic Yes Yes | Yes No
[27] Stochastic Yes No | No No
[28] Stochastic Yes Yes | No No
Proposed Model |  Stochastic Yes Yes | Yes Yes

GR: Generation Reserve; LR: Load Reserve.

were assumed to be provided only by controllable distributed
generators.

In the existing distribution market-clearing models, the DSO’s
decisions are solely based on the minimization of the system
operational cost while the management of DRE is limited or
inexistent. Thus, the existing models cannot be used in systems
that have requirements for DRE utilizations to meet decarboniza-
tion targets or achieve other sustainability goals. Moreover, the
traditional incentive mechanisms for renewable energy devel-
opment, such as tax credits and rebates, can help governments
and other organizations achieve only medium- and long-term
sustainability goals. Therefore, a market mechanism capable of
managing DRE utilization in lower time scales (e.g., day ahead)
may help several regions achieve short-term goals.

This article presents a day-ahead distribution system market
clearing and settlement model with DRE utilization constraints
through a chance-constrained two-stage stochastic optimization
approach. The DSO determines the power imports from the
wholesale electricity market as well as the scheduling of energy
and reserve capacity in the first stage, which is also denoted
as the planning stage. In the second stage, balancing actions
are performed by the DSO according to the DRE production
realizations at each node of the distribution system. The second
stage is also denoted as the balancing stage. The objective of the
resulting decision-making model is to minimize the total opera-
tion cost of the system (i.e., the costs of the planning stage along
with the expected costs of the second stage) while satisfying
the prespecified DRE utilization requirements. A comparison of
the proposed model with the state-of-the-art distribution system
market-clearing models is provided in Table I.

The main contributions of this article are twofold as follows.

1) It determines the energy and reserve scheduling for gen-
eration and load units while considering the uncertain-
ties associated with the DRE productions at different
distribution system nodes, the power flow and voltage
limits of the distribution network, and the management of
DRE spillage and load shedding actions. Different from
traditional market-clearing models that consider reserve
provision from generating units only, the proposed model
considers upward and downward reserve provisions from
both generating units and FLs, thus increasing the demand
response in the system.

2) It incorporates DRE utilization requirements, which are
modeled as chance constraints, to ensure that a certain
portion of the total available DRE in the system will be
utilized with a high probability at a specified time. To
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Fig. 1. Proposed problem framework.

the best of the authors’ knowledge, no previous work has
considered stochastic joint energy and reserve electricity
market-clearing model with renewable energy utilization
constraints at the wholesale or retail level.

The remainder of this article is organized as follows. Section I1
describes the main assumptions and the mathematical formula-
tion of the proposed model. Section III describes the algorithm
used to solve the resulting problem. In Section IV, case studies
are performed, and the results are discussed. Finally, relevant
conclusions are presented in Section V.

II. PROBLEM FORMULATION

A. Assumptions

The proposed problem framework is illustrated in Fig. 1.
Each FL and dispatchable distributed generation (DDG) unit
is assumed to submit a demand bid and a generation offering
curve, respectively, along with its upward and downward reserve
capacities and prices for the next operating day to the DSO.
Different from FLs, the nonflexible loads (NFLs) do not submit
load bids to the DSO since they cannot be easily adjusted. NFLs
are the only loads subject to load shedding. Moreover, the DSO
is assumed to have knowledge of the expected value and the
error distribution of DRE production at all distribution system
nodes with DRE units.

After all curves and parameters are received by the DSO,
the market is cleared and the amount of power purchased in
the day-ahead wholesale market, the scheduling of energy and
reserve, and the distribution locational marginal price (DLMPs)
are determined. In this decision-making process, the balancing
actions performed in the second stage are taken into account
for several DRE production realizations. Such balancing actions
include the real-time deployments of upward/downward reserve
from FLs and DDG units along with DRE spillage and load
shedding actions in every period ¢ of the operating day.

B. Objective Function

The objective function of the proposed market clearing prob-
lem is formulated mathematically as follows:

N}c Nb Nu
i DA, DA g 49 d ,d
Minimize E P + 2 O Y E Phtubtice
k=1 b=1 a=1
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N, Ni
RU 4 RU RD . RD DRD, DRD
HE g E E ﬁw(pL,k,wlL,k —Pikwrik T Priw ik

w=1 k=1 neAprE

DRU J\.D RU

Spill 4 Spill Shed 4 Shed
— pPRY ASPill 4 ,Shed ) Shed) 1)

ik tPinwhn tkw™k

The DSO’s objective in (1) comprises two terms. The first term
minimizes the total first-stage system operation cost, which is
obtained through the scheduling of energy and reserve capacity
with the maximum possible social welfare. Note that the DRE
units are assumed to operate with zero marginal costs. The
second term minimizes the expected total balancing cost in the
second stage, which considers the deployment of upward and
downward reserves from FLs and DDG units along with the
costs associated with load shedding and DRE spillage.

C. Planning Stage Constraints

The constraints related to the planning stage are formulated
mathematically as follows:

0 Py S EES U ity v i
0< Ptg,k.b < Pzg,gtgx Vt, Vk, Vb (3)
Na Na
> Pl t PR S YO PES V0V @
a=1 a=1
Nu
S Rha-PEP20 Wk ®
a=1
N Np
Z Pyt PL}}cU = Z Pl vt, Vk ©)
b=1 =1
Ny
Z Pzg,k,b - PL}}P =4 i VE @
b=1
0 < PRV < pRUmax Vt, Vk ®)
N PRI pROR Vt, Vk )
0< P&RU < PL{JkRUmax vt, Vk (10)
0< PL{iRD < PL{;CRDmax Vt, Yk (11)
0 < PPRE < max (PREE) Vt, ¥n (12)
pPA — Z Bisin Vit (13)
mEQd(l)
Q= D Quim W S
meﬂd(l)
Y. Pm= Y Pim+PDFE
meQn) JEQp(ny
Ny Na
¢ 5 (Sra-np-Seh.) s
kEQp(ny \b=1 a=1
(15)
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Z Q.‘,,n.m -

MEQdin)

Z Qt,jn‘f' Z

Ny
g9 pg
’Yan,k,b
jeﬂp{n) keﬂk(n) b=1

Nu
1 1 E : d pd DRE pDRE
_'Y::! PL?_I{ - ’]’nPL,k,a) + T PL,n Vt} Vn # 1

a=1

(16)

V},,n = V:{,J' —2 (7'jnR{,jn + Iang,jn) Vt, Vn,j € Qp(n)
(17)
Vo 8 Vg &Y™ Vi, Vn (18)
i Py pm < Ppi*  Vt, Vom (19)
2 Qo SR Vi Vam (20)
RDA >0 Vt. (21)

Constraints (2) and (3) limit the active power from FLs and
DDG units, respectively, in each block. Constraints (4)—(7)
enforce the mutual exclusivity of energy and reserve capacity
provided by FLs and DDG units. Constraints (8)—(11) limit
the upward and downward reserve capacities scheduled in the
first stage. The DRE scheduled at each node is limited by the
scenario with the highest DRE production in (12). Constraints
(13)—(17) constitute the linearized DistFlow equations, which
are widely used in the literature to model the voltage and power
flow in the distribution network [29]-[31]. In particular, (13)
and (14) constitute the active and reactive power balance at the
substation, respectively. Note that vJ, yPRE 4 and 47/ are
the coefficients used to convert the active power of the DDG
units, DRE units, NFLs, and FLs, respectively, into their reactive
power values [31]. Constraint (18), (19), and (20) limit the
squared voltage magnitude at each node, the active power in
each branch, and the reactive power in each branch, respectively.
Constraint (21) ensures that the active power purchased from the
wholesale market is non-negative.

Note that no reserve requirement constraint was included
in (2)—(21) since the energy dispatch in the planning stage is
determined by modeling the balancing actions in the second
stage, as it will be described in Section II-E.

D. DRE Utilization Constraints

Chance-constrained optimization programs ensure that one or
more constraints are satisfied with a prespecified probability. In
this article, a DRE utilization policy is enforced to ensure that a
certain portion of DRE is scheduled in the planning stage while
keeping all the other system constraints. The DRE utilization is
defined as the difference between the amount of DRE scheduled
by the DSO in the planning stage, P/3/*”, and the actual DRE
production in scenario w, P,5%’. The following DRE utilization
policy is considered [32]: For each period ¢ of the clearing
planning horizon, the DRE usage in the set of distribution system
nodes with DRE, A p, 5, must be larger than or equal to 8 with
a probability of at least 1—, where 0 < 5 < 1 and £ < 1. This

policy can be mathematically expressed as follows [32]:

Pr| > (BPORF-PSRFF)<o|>1-eve

nEApRE

(22)

The nonlinear chance constraint (22) can be replaced by the
equivalent linear constraints (23)—(25) by introducing binary
variables z; ., and using the big-M method, where M is a suffi-
ciently large auxiliary constant, to describe the same feasibility
setin (22). More details on how to reformulate nonlinear chance
constraints into linear expressions and choose the proper value
of M can be found in [32] and [33], respectively.

> (BPORE —POFFY —Mz, <0 Vit Vo (23)

t,n,w
neEADRrE
Ny
N E SNE Vi (24)
w=1
2 € {0,1} Vt, Yw. (25)

E. Balancing Stage Constraints

The constraints related to the balancing stage are formulated
mathematically as follows:

Z P{,nm - Z PL,jn+ Z (p{fﬁt‘{m _p.{f.f‘co,w

TREQd(") jEQp{") kEQk{n)
DRD DRru Shed DRE pDRE Spill
+ Pikw — Prkw -+ p.‘,,k,w) -+ PL,n,w - PL n T Hinw
== E Ptonm,w Vt, Vn, Vw (206)
meQyn)
E : _ E : i E : g RU _ _RD
Q.‘,,nm QL,_‘,'!?’I. 4= [’Yn.(p.{,k,w pt,k,w
mEQd(n) jEQp(n) kEQk(n)
d ¢ DRD DRU nfl_Shed DRE; pDRE
+ Tn (p.‘,,k,w T pL,k,w ) + Tn p.{,k,w] + Tn (PL,n,w

— P;?wfu"' —pi?:,li) = Z Gtnm,w Vi, V0, Yw 27
Mmey(n)

Vinw = Vtjw — 2 (TinPtinw + Tindi jnw)

Vt, Vn, j € Qpn), Yw (28)
Vi S i SV Vt, Vn, Vw (29)
P v S PR Vt, Vn, Yw (30)
O i ST Vi, Vn, Yw 31)
DiEp s S PIEE Vt, ¥n, Yw (32)
0<piye < Brlf Vt, Vk, Yw (33)
Q<L pit < BR7 vt, Vk, Yo (34)
0 < ppli < Py Vt, VE, Vw (35)
=gl = B Vt, Vk, Yw (36)
gEp ) £ PER0 vt, Vk, Vw. (37)
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Constraints (26)—(28) represent the altered DistFlow model
when balancing actions are performed. Constraint (29), (30), and
(31) limit the altered squared voltage magnitude at each node,
the altered active power in each branch, and the altered reactive
power ineach branch, respectively. The amounts of DRE spillage
and load shedding are limited in (32) and (33), respectively.
Finally, constraints (34)—(37) limit the deployed upward and
downward reserves by the respective reserve capacity values
obtained in the first stage.

The resulting market-clearing model given by (1)—(21), (23—
(25), and (26)—(37) is a mixed-integer linear programming prob-
lem. Note that the number of continuous variables depends on
several factors, such as the number of scenarios, the number of
bid and offering blocks, and the number of nodes with DRE
production. However, the number of integer variables is equal
to the number of scenarios. The proposed model is also known
as a variable power market-clearing model since the amount of
power purchased in the day-ahead market, PP, is a decision
variable in the problem formulation [9].

F. Market Settlement

The Lagrange multipliers of the first-stage active power bal-
ance constraint (15), A", , and the second-stage active power
balance constraint (26), (,p,, nw, are used in the proposed market
settlement mechanism. These are the dual variables of (15) and
(26), respectively, when the integer variables are fixed to their
respective optimal values. More specifically, A/, is the DLMP
at node n in the period £, which represents the marginal cost of
supplying the nextincrement of load [15]. Furthermore, @y , , is
used to calculate the balancing price at node » in scenario w and
period 1. Let n(k) be the node index for the market participant k.
The energy-only market settlement, which aims to determine the
cost or revenue of each market participant for each time period
and scenario, is mathematically formulated as follows [26], [34]:

Stiw = M) Bk + M) wAEkw (38)
B Pin(k)w
Mon(kyw = v (39)

note that S; ., in (38) represents the resulting cost, if negative,
or revenue, if positive, of the market participant k. The market
settlement given by (38) and (39) is denoted as an energy-only
market settlement sinceitis only based on energy payments (i.e.,
E; x and AE; ;) and does not include any reserve capacity
costs [34].

III. SOLUTION ALGORITHM

A sample average approximation (SAA)-based solution al-
gorithm is designed to solve the proposed chance-constrained
two-stage stochastic program. The SAA algorithm [32], [35]
is useful for solving stochastic optimization problems with a
large number of random variables (e.g., DRE productions at
several nodes of a distribution system) with better tractability
than the traditional methods based on large scenario trees. The
SAA-based solution algorithm consists of generating DRE sce-
narios (i.e., samples from the DRE probability distribution) and
determining the lower and upper bound estimates of the resulting
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Fig. 2. Flowchartof the SAA algorithm for the proposed model.

objective function value [i.e., the total expected system operation
cost given by (1)], and the resulting optimality gap for a given
scenario set. As the number of scenarios approaches infinity, the
optimality gap approaches zero. Thus, the SAA algorithm allows
one to find the number of scenarios that result in an acceptable
optimality gap.

Note that the second term of the objective function (1)
minimizes the expected balancing cost, denoted as E[f(xq )],
where xgq ,, is the vector of the second-stage decisions for the
uncertainty set €2, with N, scenarios. In the SAA framework,
E[f(xq,, )] is reformulated as follows:

Ny
Elf (vay)] = 3 3 f (@ax)- (40)
W ow=1

Different from the traditional methods based on large and
fixed scenario trees, the SAA method allows calculation of the
expected value of the balancing cost and verification of the
quality of the solutions for scenarios sets of differentsizes, which
can be obtained by sampling a probability distribution.

The theoretical description (i.e., propositions, theorems, and
proofs) of the SAA algorithm for chance-constrained optimiza-
tion is provided in [35]. The main algorithm steps are summa-
rized in Fig. 2 and described in detail as follows.
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1) Set the numbers of iterations N; and N,, the number of
DRE scenarios N, of the set {25 to be tested, and the
number of DRE scenarios N, of the auxiliary validation
set 2, where N > N,,.

2) Fori=1,2,..., N, repeat the following steps:

2.1) Fors =1,2,..., N,, repeat the following steps.

a) Generate the scenario set Qn =
{wi,ws, ...,wy, } with N, scenarios to be
tested.

b) Solve the proposed optimization problem given
by (1)—(21), (23)-(25), and (26)—(37) to obtain
the optimal first-stage solution =, and the optimal
objective function value in (1) as O,.

¢) Generate the auxiliary validation scenario set
Qnr = {wh,wh, ...,w)y } with Ny, scenarios,
where N > N,,. N

d) Estimate the chance constraint probability in(22)
as gy (Zs) over the auxiliary validation set £y
by

dn' (Ts) = Pr {G (Zo,w’ € Q1) >0} (41)

where G is the DRE utilization given in (22).

e) Construct the 100 (1 — 7)% confidence interval
upper bound on the chance constraint probability
in (22), denoted as U () , by

U (&) = g () \/ ' () (1 = 4w (24))

N
(42)

where z, = ¢~ 1(1 — 7) and ¢ is the cumulative
distribution function of the standard normal dis-
tribution.

f) If U(z,) < ¢, go to step (2.1.g; else, go back to
step (2.1).

g) Estimate the corresponding upper bound of the
expected system operation cost with N,» DRE
scenarios, denoted as U (v,), by

U(t:)=cTZs + — Z Q(ur, Unr)

(43
Nwr )

w'=1

where Q(Z,, (1p) is the second term of the
objective function (1) with the second stage de-
cisions 1, and validation set 2.
2.2) Pick the smallest value of U(v.) obtained in Step
(2.1) and denote it as §".
Sort the N, optimal objective function values ob-
tained in Step (2.1.b) in nondecreasing order (i.e.,
0y < Oy < ...< Op,). Let B denote the cumula-
tive distribution function of a binomial distribution.
Pick the Lth optimal value Op_, where L is the
largest integer such that B(L — 1, Oy, N,) < 7,
and Oy, = B(eN,, &, Ny).

2.3)

19 20 21 22 26 27 28 29 30 31 32 13
9 0000

2 dlsguunpusus

L B
L B
[ T

=y

*—a—8
B M5

Fig. 3. The 33-node distribution system [31].
3) Estimate the lower bound of the expected system operation
cost O by

1
) = — Orp,. L2
N, Z L, (44)
i=1
4) Estimate the upper bound of the expected system operation
cost g by

A . al
g=,mn.g. (45)

5) Calculate the optimality gap as follows:

Gap = M

o) (46)

IV. CASE STUDIES
A. Data

The proposed model is validated by using a 33-node and a
123-node distribution system. The systems are composed of
DSE units, DDG units that provide energy only, DDG units
that are capable of providing energy and upward/downward
reserve, FLs that can provide reserve, FLs that cannot provide
reserve, and NFLs. The DSO is assumed to participate in the
Pennsylvania-Jersey-Maryland market [36]. The DSE produc-
tion at each node is forecasted based on historical data from the
National Solar Radiation Database [37] by using a seasonal au-
toregressive integrated moving average model in the MATLAB
econometrics toolbox [38]. The DSE productions at all nodes
are assumed to be uncorrelated. The DSE forecast errors are
assumed to be normally distributed and equiprobable scenarios
are generated from the resulting DSE distribution via Monte
Carlo simulation to be used in the SAA algorithm described
in Section III. Each time period ¢ corresponds to one hour. A
day with significant DSE production during hours 9-18 (i.e.,
from 09:00 AM to 06:00 pPM™) is considered. Additionally, the
load shedding cost A;7:*? is set to $100/MWh for all nodes with
NFLs; and the lower and upper voltage deviation limits with
respect to the substation are set to —5% and +5%, respectively.
The resulting optimization problem is solved by using Yalmip
[39] and Gurobi 9.0 [40] in MATLAB. The computer used for
simulation studies has a 4.60-Ghz, 4-core CPU, and a 16-GB
RAM.

B. Results — 33-Node System

The 33-node distribution system is shown in Fig. 3. The DSE
producers are located at nodes 4, 11, 17, 22, 25, and 33. A
complete list of all agents in each node of the system and their
respective energy and reserve price bids can be found in [41].
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Fig. 4. Expected DSE production, wholesale market prices, and electricity
demand from NFLs.

TABLE I
OPTIMALITY GAPS AND SIMULATION TIMES FOR DIFFERENT NUMBERS OF
DRE SCENARIOS — 33-NODE SYSTEM

(N, N5, Nooir) N, Optimality Solution | Verification
Gap (%) Time (s) Time (s)
10 1.79 0.7 217
50 0.78 0.9 222
(5.5,1500) 100 0.55 1.7 243
200 0.28 5.7 325
300 0.13 9.9 425
TABLE Il

TOTAL ENERGY AND RESERVE AMOUNTS (MWH) SCHEDULED IN THE
PLANNING STAGE — 33-NODE SYSTEM

EG EFL
152.6 | 400.5

EDSE
82.7

URPG
15.9

URFL
16.5

DRPG
15.9

DRFL
16.4

Fig. 4 shows the total expected DSE production in the system,
the day-ahead wholesale market prices, and the electricity de-
mand from NFLs for the operating day considered. Initially, the
DSE spillage cost lf,,’f“ is assumed to be $25/MWh at all nodes
with DSE production, and the chance-constraint parameters are
f=0.8ande =0.15.

Table 11 shows the optimality gap, the solution time (i.e., the
time to solve the problem using N,, scenarios in Step (2.1.b) of
the SAA algorithm), and the verification time (i.e., the time to
calculate the optimality gap) for N, from 10 to 300. Note that
the optimality gaps decrease and the simulation times increase as
the size of the scenario set used in the SAA algorithm increases.
An optimality gap lower than 0.15% was obtained with (N;, N,
N.r)=(5,5,1500) and N,,= 300, for a 95% confidence interval
(i.e., 7 = 0.05).

Table III gives the total amounts of energy scheduled from
the DDG units, FLs (EFL), and DSE units (EDSE) as well as
the amounts of upward reserve from DDG units (URPG), FLs
(URFL), and the downward reserve amounts from DDG units
(DRPG), and FLs (DRFL), in the planning stage obtained with
the proposed model. The amounts of upward and downward
reserve are limited by the lowest and highest DRE production
scenarios, respectively. In this case study, both reserve amounts

IEEE SYSTEMS JOURNAL
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Fig. 6. Expected reserve deployed in the balancing stage in the 12th hour.

are nearly 40% of the total energy scheduled from DSE units,
as shown in Table I1I.

Theimpact of different DRE utilization parameters ¢ and /3 on
the expected system operation cost in the period with the highest
DRE production (i.e., the 12th hour) is shown in Fig. 5. For a
fixed risk parameter &, the higher the value of /3, the higher the
system operation cost. On the other hand, for a fixed value of /3,
the higher the risk parameter &, the lower the system operation
cost. Thus, to minimize the operation cost of the system, one
should choose the largest possible value for £ and the smallest
possible value for /3.

Fig. 6 shows the expected deployment of downward and
upward reserves in the balancing stage in the 12th hour when =
is fixed to 0.2 and (3 is varied from 0.7 to 0.95. It turns out that
the expected upward reserve deployed in the balancing stage
increases with higher values of /3 since more DRE is scheduled
in the planning stage, which entails higher risks in the scenarios
with lower DRE production. On the other hand, the expected
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Fig. 7. Impact of the DRE spillage cost in the 12th hour.

TABLE IV
DLMPs IN THE 17TH HOUR WITH BRANCH CONGESTION

Node 1 2 3 -+ 5 6
DLMP ($/MWh) | 41.07 | 41.07 | 41.07 | 41.07 | 41.07 | 41.07
Node 7 8 9 10 11 12
DLMP ($/MWh) | 41.07 | 41.07 | 41.07 | 41.07 | 41.07 | 41.07
Node 13 14 15 16 17 18
DLMP ($/MWh) | 41.07 | 41.07 | 48.63 | 48.63 | 48.63 | 48.63
Node 19 20 21 22 23 24
DLMP ($/MWh) | 41.07 | 41.07 | 41.07 | 41.07 | 60.52 | 60.52
Node 25 26 27 28 29 30
DLMP ($/MWh) | 60.52 | 44.31 | 44.31 | 4431 | 4431 | 44.3]
Node 31 32 33 - - -
DLMP ($/MWh) | 44.31 | 44.31 | 44.31 - - -

downward reserve decreases as 3 increases since more DRE is
utilized in the scenarios with higher DRE production.

To analyze the impact of the DRE spillage cost on the DRE
utilization, the risk parameter £ is set to 1, i.e., the chance
constraint (22) is neglected. Then, the DRE spillage costis varied
and the percentage of the scenarios N, that satisfy the DRE
utilization probability in (22) is calculated for different values
of 3 in the 12th hour, as shown in Fig. 7. It turns out that the
higher the DRE spillage cost, the higher the number of scenarios
that will satisfy the DRE utilization policy. However, high DRE
spillage costs may discourage investments in DRE units. On the
other hand, the use of DRE utilization constraints with lower
DRE spillage costs represents a less risky alternative for DRE
producers.

When there is congestion in the distribution network, the
DLMPs at the nodes subjacent to the congested branches are
higher than the DLMPs at the superjacent nodes since more
expensive energy from DDG units needs to be used. Table IV
shows the DLMPs at each node of the system during the 17th
hour when the branches between nodes 2 and 23, 6 and 26, and
14 and 15 are congested. Note that the DLMPs at all the nodes
subjacent to the congested branches are higher than the DLMPs
at the nodes not affected by branch congestion.

To illustrate the impact of the DRE uncertainties on the
proposed model, the system operation costs obtained from the
proposed stochastic optimization model with N, = 300 without
the DRE utilization constraints are compared with the costs

System operation cost ($)
2
2

2300
2200
2100
2000
19w — -L 1 L L 4 L L L L
9 10 11 12 13 14 15 16 17 18
Hours of the Day
Fig. 8. Expected system operation cost obtained with the stochastic and

deterministic models for hours 9—18.
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Fig.9. The 123-node distribution system [42].

obtained from the deterministic counterpart problem that relies
on the expected DRE production values rather than considering
probabilistic scenarios. The comparison results for hours 9—18
shown in Fig. 8 indicate that the system operation cost can
be reduced in all hours when the stochastic nature of DRE is
considered in the day-ahead decisions.

C. Results — 123-Node System

In this section, a 123-node system shown in Fig. 9 is used to
further verify the applicability of the proposed model for a larger
system. The DSE producers are located at nodes 5,31,36,49, 52,
69,76,91,105,and 110. A complete list of all agents ateach node
of the system and their respective energy and reserve price bids
can be found in [41]. The chance-constraint parameters are 5 =
0.8 and £ = 0.15. Table V shows the optimality gap, the solution
time, and the verification time for IV, from 10 to 500. Similar to
the results of the 33-node system, the optimality gap decreases
as the number of scenarios increases. However, compared to the
33-node system, the simulation times for the 123-node system
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TABLE V
OPTIMALITY GAPS AND SIMULATION TIMES FOR DIFFERENT NUMBERS OF
DRE SCENARIOS — 123-NODE SYSTEM

(N;, No. N») N, Optimality | Solution | Verification
Gap (%) Time (s) Time (s)
10 3.41 0.87 770
50 iz 4] 2.07 800
100 0.79 4.54 862
(5,5,1500) 200 0.50 20.32 1250
300 0.36 42.49 1810
400 0.30 107.85 3425
500 0.13 156.46 4650
TABLE VI

ToTAL ENERGY AND RESERVE AMOUNTS (MWH) SCHEDULED IN THE
PLANNING STAGE — 123-NODE SYSTEM

EG
1,683.2

EFL
911.5

EDSE
310.1

URPG
67.2

URFL
60.8

DRPG
68.6

DRFL
62.4

increase more significantly when a high number of scenarios
are considered. The tradeoff between the optimality gap and
simulation times should be carefully considered by the DSO.
An optimality gap lower than 0.15% was obtained with (/V;,
Ng, N.) = (5,5, 1500) and N,= 500, for a 95% confidence
interval.

The total amounts of energy and reserve scheduled in the
planning stage using the proposed model with N, = 500 for
the 123-node system are provided in Table VI. In this case, the
total reserve amounts are also nearly 40% of the total energy
scheduled from DSE units as in the case study for the 33-node
distribution system provided in Section IV-B.

V. CONCLUSION

The next-generation retail electricity market will promote
increased decentralization, competitiveness, and customer in-
tegration, as well as optimize the use of DERs through the
effective integration of new entities and market mechanisms in
the distribution grid. In this article, a distribution system market
clearing and settlement model was presented. The proposed
model can help DSOs determine the optimal scheduling of
energy and reserve and the DLMPs while considering the DRE
production uncertainties at different nodes of the distribution
system and different DRE utilization requirements. The result-
ing problem was formulated as a two-stage chance-constrained
stochastic optimization problem, which was solved with an
SAA-based Monte Carlo simulation algorithm. Case studies ona
33-node distribution system and a 123-node distribution system
showed how different DRE utilization requirements affected the
expected system operation cost and the deployment of upward
and downward reserves. Moreover, the hourly costs obtained
with the proposed stochastic model were compared with the
costs obtained with the deterministic counterpart model. The
comparison showed that the stochastic model resulted in lower
system operation costs for all periods with significant DRE
production. Future work can be conducted to study the optimal
participation of DER owners in the proposed market clearing
mechanism and the correlation of the DSE productions between

IEEE SYSTEMS JOURNAL

neighbor nodes. Moreover, the proposed model can also be
extended to unbalanced distribution networks for which different
solution techniques can be studied and compared.
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