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Abstract—This article presents a short-term decision-making
model for an electricity retailer using bilevel stochastic programing.
In the proposed model, a liberalized distributed renewable energy
(DRE) market in which the retailer competes with other load serv-
ing entities (LSEs) for procuring DRE is proposed. The retailer, in
the upper level, decidesitslevel of involvement in the day-ahead and
real-time markets, as well as the price bids offered to DRE produc-
ers for every time period, with the goal of minimizing its expected
procurement cost at a predefined risk level. On the other hand,
DRE producers, in the lower level, react to the price bids offered
by the retailer under study and other LSEs, to maximize their total
revenues. The stochastic nature of day-ahead and real-time market
prices, DRE production, electricity demand, and price bids of the
retailer’s rival market agents (RMAs) is taken into the formulation
of the proposed model. By using the Karush-Kuhn-Tucker (KKT)
optimality conditions and duality theory, the bilevel problem is
transformed into its equivalent single-level mixed-integer linear
programming (MILP) problem. Case studies are performed to
show the effectiveness of the proposed model.

Index Terms—Bilevel stochastic programming, distributed
renewable energy (DRE), electricity retailer, retail electricity
market.

NOMENCLATURE
Indices and Sets

t, Ny Index and set of time periods, respectively.

w, Ny, Index and set of scenarios of day-ahead and real-
time market prices, electricity demand, and DRE,
respectively.

Ty Ny Index and set of all LSEs participating in the lib-

eralized DRE market, respectively. Hereinafter, the
index r = 0 denotes the retailer under study.
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£, N= Index and set of price bid scenarios of the RMAs,
respectively.

Input Parameters and Constants

My Probability of scenario w.

e Probability of scenario &.

o Conditional Value at Risk (CVaR) per-unit confi-
dence level.

Ié) Risk-aversion parameter of the retailer.

M, M>  Large auxiliary constants.

Ptw Minimum DRE purchases set by the retailer for

X period f and scenario w.

ppT Expected DRE exported to the local grid during
period  (MWh).

oL Expected day-ahead market price during period ¢
($/MWh).

iRT Expected real-time market price during period ¢
($/MWh).

ARMA Expected value of DRE price bids of the RMAs
during period 7 ($/MWh).

" Vi Standard deviation of day-ahead market price
scenarios during period 1 ($/MWh).

ol Standard deviation of real-time market price scenar-
ios during period ¢ ($/MWh).

o Standard deviation of the RMAs’ price bid scenarios
during period 7 ($/MWh).

Random Variables

¥ Day-ahead market price during period f and scenario
w ($/MWh).

AT Real-time market price during period ¢ and scenario

' w ($/MWh).

PE'::; Net power demand of the retailer’s clients dur-
ing period f and scenario w (MWh). It is the
difference between the total hourly demand and
the power purchased from occasional forward
contracts.

BT Total DRE exported to the local grid during period
t and scenario w (MWh).

A DRE price bid of RMA r during period ¢ and

scenario £ ($/MWh).
Decision Variables
PR Power purchased from the day-ahead market by the
retailer during period  (MWh).
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PRET Power purchased from the real-time market by the
, retailer during period 7 and scenario w (MWh).

PRRE Power purchased from DRE producers by the
retailer during period 7 and scenario w (MWh).

CPYY  Retailer’s cost from purchasing DRE during period
t and scenario w ($).

Aot DRE price offered by the retailer during period ¢
($/MWh).

Tyre Fraction of the total DRE thatis sold to LSE r during

period f and scenario £.

Uiy e Binary variable used in the linearization of the com-
plementary slackness condition of LSE r for period
1 and scenario &.

i g Lagrange multiplier associated with the power
balance of the retailer’s clients during period f and
scenario &.

T Auxiliary variable used to compute the CVaR in
scenario w.

¢ Auxiliary variable used to compute the CVaR.

[. INTRODUCTION

HE DEREGULATION of the retail electricity market has

promoted liberalization, competition, and increased inno-
vation in many states and countries around the world. In dereg-
ulated jurisdictions, end-user retail customers have the power
to choose their electricity suppliers along with tariff schemes
and services that better satisfy their needs and preferences [1].
Today, more than 25 countries in the European Union and 13
in the Asia-Pacific region have fully deregulated markets [2]. In
the United States, more than 16 million customers in 17 states
participated in retail choice programs in 2017 [3]. Electricity
retailers are important load serving entities (LSEs) in deregu-
lated electricity markets. They are intermediary agents between
electricity producers and consumers which provide energy prod-
ucts to retail customers and operate independently of generation
and distribution companies [4]. Retailers usually obtain electric-
ity from forward contacts, self-production, and the pool-based
electricity market to supply it to their customers through retail
contracts. The pool-based electricity market is usually the main
source of uncertainties in a retailer’s decision-making model
due to the high price variability [5]. Such uncertainties impose
risks that should be carefully considered and properly managed.
Green energy programs (GEPs) are an example of innovative
programs offered by retailers to retail customers in deregulated
retail markets. Through GEPs, retail customers can choose
to purchase electricity from different clean and renewable
sources. In the U.S., over one million retail customers procured
more than 17 million MWh of renewable energy from GEPs
in 2017 [6].

The generation from DRE technologies [7] (i.e., distributed
generation technologies based on renewable resources) has been
increasing exponentially around the world in the last years. Pho-
tovoltaic (PV) systems represent one of the fastest growing DRE
systems in the residential, commercial, and industrial sectors
due to installation cost reductions and the development of new
technologies that can be adapted to customers” needs and prefer-
ences [1]. In the U.S., generation from small-scale PV systems
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with less than 1 MW of generating capacity more than doubled
from 2014 to 2018, totaling about 40% of the total annual PV
generation in 2018 [8]. However, the integration of DRE into the
electricity market is still very limited. The existing net metering
and feed-in tariff programs for DRE offer very limited customer
participation and competitiveness in the present retail electricity
market. Such programs have been in the center of increasing
controversy and there is no consensus among LSEs and policy
makers on how retail customers should be compensated for the
DRE they export to the grid. In addition, DRE has also played
a limited role in wholesale electricity markets. According to
the U.S. Federal Energy Regulatory Commission (FERC), DRE
generators on a stand-alone basis do not meet the minimum
size requirements and do not satisfy the operation performance
required to participate in wholesale electricity markets. For
instance, commercial PV systems in the U.S. have 200 kW of
capacity on average [9]. Most of these systems cannot participate
in many U.S. wholesale markets which require at least 1 MW
of generation capacity [10]. DRE aggregation in the wholesale
market can potentially solve this issue. However, the existing
DRE aggregation programs are very limited and do not promote
competition or effective customer integration. Therefore, the
currentretail electricity marketis not fully liberalized since DRE
is not considered a competitive resource and DRE producers are
still considered passive market agents. In addition, the lack of
business models and trading mechanisms for DRE along with
limited distributed system awareness makes DRE “invisible”
to many LSEs. However, the next-generation retail electricity
markets will need trading mechanisms aimed to promote more
visibility of DRE to LSEs along with increased competition,
flexibility, and customer integration [1].

During the last years, increasing attention has been devoted
to the development of decision-making strategies for electricity
retailers and other LSEs considering the integration of dis-
tributed energy resources. Most of the works in the literature,
however, consider only the participation of proactive retail cus-
tomers in demand response (DR) programs [4]-[5], [11], [12].
In [13]-[16], distributed generation (DG) is integrated into the
decision-making models of LSEs. However, all DG units were
considered to be owned and operated by the LSEs under study.
In [17], [18], the optimal acquisition of DG from independent
producers in distribution networks was studied. However, such
works were restricted to dispatchable and non-renewable DG
technologies. Bilevel programming, which models Stackelberg
leader-follower games, has been used to model the hierarchical
decisions of LSEs and DRE producers. In [19]-[22], bilevel
programming models were proposed in which DRE producers
compete with each other by reacting to the prices offered by
LSEs. Other game-theory-based approaches were proposed to
model the relationship between LSEs and DRE producers via
Energy Internet models [23], [24] and distribution system market
clearing approaches [25], [26]. However, the existing work that
modeled the interactions between DRE producers and LSEs
considered only the competitiveness among DRE producers.
Thus, in such approaches, DRE producers are limited to trading
DRE with only one LSE. However, a liberalized DRE market
may help several market agents avoid high price fluctuations in
the wholesale market and fulfill the GEP requirements, as well
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Fig. 1. Competitive DRE market framework.

as encourage more production of DRE and make DRE producers
active agents in the retail electricity market [1].

This paper presents a short-term decision-making model for
an electricity retailer through a bilevel stochastic programming
approach. In the proposed model, a liberalized market for short-
term DRE is proposed. Through such a market, LSEs such as
retailers and aggregators compete with each other to purchase
DRE by submitting price bids to DRE producers to minimize
their energy procurement cost and/or diversify their portfolios of
renewable energy. On the other hand, DRE producers determine
the amount of DRE to be sold to each market agent based on
all received offers. The retailer, in the upper level, minimizes
its total expected procurement cost for the following day. DRE
producers, in the lower level, react to the price offered by the
retailer under study and its RMAs, and maximize their total rev-
enues. The stochastic nature of day-ahead and real-time prices,
DRE production, electricity demand, and the RMASs’ price bids
is considered in the proposed model. To the best of the authors’
knowledge, no previous work considered a liberalized DRE
market in the retail level or its impact on a retailer’s short-term
decision-making model.

The remainder of this paperis organized as follows. Section I11
describes the proposed DRE market and the decision-making
framework of a retailer and DRE producers. Section IV presents
the mathematical formulation of the proposed decision-making
model. Case studies are performed and discussed in Section V.
Finally, concluding remarks and discussions are provided in
Section VI.

II. CoMPETITIVE DRE MARKET AND BILEVEL FRAMEWORK

The competitive DRE market framework considered in this
paperisillustrated in Fig. 1. Insuch aframework, DRE producers
can sell their energy surplus directly to LSEs which include the
retailer under study and its RMAs, such as other retailers and
aggregators. LSEs send DRE price bids to DRE producers for
every time period f of the following operating day. On the other
hand, DRE producers react to all prices received and determine
the percentage of DRE to be supplied to each LSE. In the
proposed framework, it is assumed that all market agents are
provided with smart grid technologies and trading platforms that
enable safe and efficient interactions among all agents.
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Objective: Minimize procurement cost
First Stage
Decision Variables:

Day-ahead market purchases
DRE price bids

Uncertainty:
Power demand  + DRE share
DRE production
Day-ahead and real-time market prices

Second Stage

Decision Variables:
* Real-time market purchases
Known:
= Power demand * DRE share
* DRE production
+ Day-ahead and real-time market prices

.

Upper Level:
Retailer

Objective: Maximize expected profit

Lower Level:

DSclion Vaitablas: DRE Producers

* DRE share

Fig. 2. Bilevel modeling framework.

The bilevel decision-making framework of the retailer and the
DRE producers is illustrated in Fig. 2. The retailer, in the upper
level, minimizes its expected procurement cost in two stages.
In the first stage, the retailer defines the optimal offering curves
for the day-ahead market as well as the DRE price bid for every
period of the following operating day without the information
on day-ahead and real-time market prices, DRE production,
electricity demand, and DRE share. The decisions in the first
stage are also called here-and-now decisions since they are made
before the random variables are known [27]. On the following
operating day, after the day-ahead market is cleared as well as
the DRE production, electricity demand, and DRE share are
known, the retailer determines its involvement in the real-time
market for every time period in the second stage. The decisions
in the second stage are also called wait-and-see decisions since
they are made after the random variables are known. Note that
the real-time market, also known as balancing market, is the
platform whereby the retailer can amend its energy deviations
from the first stage in order to ensure the balance of energy
supply and demand. In the lower level, DRE producers react to
the prices offered by the retailer under study and its RMAs by
determining the percentage of DRE (i.e., the DRE share) to be
supplied to each market agent with the objective of maximizing
their total revenues.

In this paper, a seasonal autoregressive integrated moving
average (SARIMA) model is used to generate a large number
of scenarios for day-ahead and real-time market prices, DRE
production, and electricity demand based on historical data.
According to [27] and [28], a stochastic process Y can be
mathematically expressed as the following SARIMA model:

p P
(1 -y ¢g39) (1 - &B* ) (1- B) 1 - B°)"y
g=1 i=1
q Q
B (1 —Zﬂth) (1—) ©;B™)e, e
j=1

h=1
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where 1, ¢2,...,¢p, are p autoregressive parameters;
01,0s,...,0, are g moving-average (MA) parameters;
Py, @y, ..., ¢p are P seasonal autoregressive parameters;
01, B4, ..., O are O seasonal MA parameters; ; is an error

term, which is represented by an independent normal stochastic
process; and B is the backward shift operator whose function is
expressed as follows:

de!, = Yi-d (2)

Then, a fast-forward scenario reduction algorithm [29] is used
to reduce the original scenarios of each random variable to a
sufficiently small number, to alleviate the computational burden
of the model. Each resulted scenario w represents a scenario
combination of the random variables in the upper level and has a
probability of occurrence m,, such that 3" 7, = 1. Similarly,
the uncertainty associated with DRE price bids of the RMAs for
every time period are modeled as random variables "¢ using
a finite number of scenarios. Each scenario & has as probability
of occurrence 7¢ such that Z?E 7e = L.

III. MATHEMATICAL FORMULATION
A. Bilevel Modeling

The decision-making model of the electricity retailer is for-
mulated as the following bilevel programming problem:

Ng Ny
Minimize Z Z'ﬁw [P ,:,DA l.:,?;f + P, L{glffj
w i
DRE, DRE
+PL,w Jk’-‘:,l:' ]
1 Na
+ — D il 3
B¢+ 1—a Z wlw 3
w
Subject to:
R R e A
@)
PPRE > 4 PPT, Vit Yw (5)
N=
Péﬂ)ﬂh _ PL{JwT Zﬁgﬁ,o,g; Vt, Vw (6)
£
PRA =PRI, it APt =000 vt Vw, W
(N
(02302 (PR~ PEA) <05 i
)

N
E : DAy DA RT 4 RT DRE, DRE

[PL l.‘,,w + PL,w l.‘,,w + PL,w 1'.‘,,0 :I
i

— (< 1w Vw ©)
N = 0; Yw (10)
PP, PR >0 Vt, Yw (11)
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where ;0 €

. Nr
. imi DT |3 DRE,, DRE ..
arg { Maximize P} Ao CTrog Y Appe Trg
2

rel
r#0
(12)
Subject to:
Ng
> wipe =1 (13)
-
:’EL,T,E 2 0’ } (14)

The proposed model (3)—(14) comprises an upper-level prob-
lem (3)—(11) and a set of lower-level problems (12)—(14) for
each time period ¢ and each scenarios £ of the RMAs’ price.

The upper-level objective function (3) comprises two terms:
1) the expected procurement cost of the retailer from acquiring
energy in the day-ahead, real-time, and DRE markets; and 2)
the CVaR multiplied by a weighting factor 3, which controls
the risk-aversion of the retailer. For a given confidence level a,
the CVaR is defined as the expected profit associated with the
(1 — @) x 100% worst scenarios. The weighting parameter /3 in
(3) is predetermined by the retailer to control its risk-aversion
level. The larger the value of /3, the greater the risk aversion of the
retailer, which results in a lower CVaR and a higher expected
procurement cost. The decision variables associated with the
retailer’s expected procurement cost in (3) are the amount of
power purchased from the day-ahead market P,°4, the real-time
market P/%]’, and the proposed liberalized DRE market P/)/*".
In addition, the auxiliary decision variables 7, and ¢ are used
to compute the CVaR.

Constraint (4) determines the energy balance of the retailer
for each time period and each scenario. Constraint (5) sets the
minimum amount of DRE that the retailer is willing to acquire
in every time period and scenario. This amount is represented as
apercentage o, of the total available DRE in the local grid in
time fand scenario w. Note that (5) can be adjusted to enforce that
a certain amount of DRE is purchased by the retailer. However,
since the actual DRE is uncertain (i.e., modeled by a set of
scenarios), it may lead the problem to become easily infeasible
since the amount of DRE purchases set by the retailer may be
higher than the actual DRE production. The amount of DRE
acquired by the retailer in time f and scenario w is given by (6)
and is equal to the total available DRE in the local grid multiplied
by the retailer’s share of DRE ;¢ ¢, which is defined by the
DRE producers in the lower level. Constraint (7) constitutes
the nonanticipativity conditions related to the decisions made
in the day-ahead market. Constraint (8) enforces a decreasing
offer curve in the day-ahead market. Constraints (9) and (10) are
used to compute the CVaR for every scenario w. Constraint (11)
constitutes non-negative variable declarations.

Although the distribution network constraints are generally
not considered in the decision-making models of retailers, the
DRE price bids submitted by the retailer and its RMAs are
assumed fo be restricted in order not to violate distribution
network limits, such as bus voltage limits and the capacity limits
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of distribution and substation transformers, and network security
requirements. Such limits are assumed to be imposed by the
distribution network operator in real-time.

The lower-level objective function (12) comprises two terms
associated with the revenues of the DRE producers. The first
term represents the revenue obtained from selling DRE to the
retailer under study. The second term represents the revenue
obtained from selling DRE to the RMAs.

Constraint (13) sets the total DRE production to be sold to the
LSEs in the set Np. Constraint (14) enforces the percentage of
DRE sold to each LSE to be positive. In the proposed model, the
day-ahead and real-time prices are considered to be independent
of the DRE productions and the actions of DRE producers.

B. Equivalent Single-Level Model

The bilevel problem (3)—(14) is nonlinear due to the existence
of the bilinear product P2 )3 DIE in (3) and (9). The nonlinear
bilevel programming prdblem is then converted to its equivalent
single-level mixed-integer linear programming (MILP) problem
through the following steps in order to be efficiently solved by
existing commercial solvers:

1) The bilevel problem is transformed into an equivalent
single-level problem by replacing each lower-level prob-
lem (12)—(14) by its corresponding KKT optimality con-
ditions [30].

2) The nonlinear complementary slackness conditions of
Step 1 arereplaced by a set of equivalent linear expressions
[31].

3) The bilinear product P 1) DRE js equivalently replaced
by alinearexpression uéing the du ality theory, as described
in the Appendix.

The converted equivalent single-level MILP problem is ex-

pressed as follows:

Ng Ny
Minimize Z Z'zrw [PPA lﬁf + P, LJ,:LA;TJLE?&T + C!:?a::u‘;]
w L
1 No
o8¢+ ks Soem ®
i w
Subject to:
PLDA + PL{i:T"" pii;‘“‘f' — PL’L; Vi, Yw (16)
PL.:iJJuc > (PL,wPL{iJT; Y, Yw  (17)
Nz
PDRE _ PLB.:TZ Tt 0,5 Vt, Yw  (18)
£
PRA =PRI it ADS =P W Ve, W
(19)
(W2 = A02) (PI = PULE) <05 Wt YoV
(20)
Ny

E : DAy DA RT 4 RT DRE DRE
[PL l.‘,,w + PL,w l.‘,,w + PL,w Jk'.‘,,[! :I
i

— (< Yw(2D)

2807

Nr
>t =1 VLVE  (22)
T
—PPTARE — e >0, VEYE (23)
- pLDTli,J:ng — pee =0,
r=1...Ny VtVE (24)
- pLDTlE',JdQE —pue < My Hﬁg,g; Ve, VE
(25)
- pLDTlE?:,%E —peg < Miug, e, 7=1... Ny
Vi, Vé (26)
Tire < My (1—uf,c); VYR VE  (27)
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N= Np
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£ reR
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(30)

Through Steps 1-3, a new set of constraints is integrated
in the resulting model. Constraints (22)—(28) represent the lin-
earized KKT optimality conditions obtained in Steps 1 and 2.
In particular, (25)—(27) represent the complementary slackness
conditions, which were linearized through the Big-M method
[32], [33]. Note that the values of M; and Ms should be
sufficiently large (e.g., larger than the bound of the Lagrange
multiplier 4 ¢), but are expected to be as small as possible
to avoid the problems of substantially increasing the solution
time and introducing rounding errors, as described in [34]. In
(29). CLJ*" represents the retailer’s cost of buying DRE in the
time period f and scenario w, i.e., CORE = pDRE) DRE Thijg
bilinear product is converted into a linear expres,sion in,Stcp 3,as
described in the Appendix. Finally, Constraint (30) constitutes
the overall non-negative variable declarations of the single-level
MILP model.

IV. CASE STUDIES
A. Data

The effectiveness of the proposed model is illustrated through
two case studies. In the first case, the RMASs’ price bids have the
expected value nearly the same as and the standard deviation
lower than those of the real-time market prices, respectively, in
every time period. In the second case, the RMAs’ price bids
have an expected value higher than and a standard deviation
lower than those of the real-time market prices, respectively,
in every time period. In both cases, the standard deviations
considered are calculated for the RMASs’ price bid scenarios
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and real-time market price scenarios, respectively. A retailer
participating in the PJM market is considered. In addition, a
group of commercial-scale PV producers, with a total capacity
of 200 MW is assumed to participate in the proposed liberalized
DRE market. For the sake of completeness, an operating day with
24 hours is considered. However, the liberalized DRE market is
assumed to be comprised of ten hours, from 09:00 AM to 06:00
PM (hours 9-18), which corresponds to the period with signifi-
cant PV production in a spring day. Thus, the retailer may only
participate in the DRE market during these hours. Each period
t corresponds to one hour. The uncertainties associated with the
PV production are generated based on historical data from the
National Renewable Energy Laboratory (NREL) website [35].
The uncertainties associated with the demand of the retailer’s
clients and the wholesale electricity market prices are generated
based on PJM historical data [36].

An SARIMA model was obtained from the MATLAB econo-
metrics toolbox [37] to generate 500 scenarios for electricity
demand, day-ahead and real-time market prices, and PV power
exported to the local grid for every hour, respectively. To attain
tractability while preserving sufficient stochastic information in
the scenario set, the numbers of scenarios of electricity demand,
day-ahead price, real-time price, and PV power are then reduced
to 3, 4, 4, and 4, respectively, thus resulting in 192 scenarios in
the upper level problem. For illustrative purposes, 6 RMAs are
considered, and their respective DRE price bids are modeled by
4 randomly generated scenarios with equal probabilities [31].
The resulting model expressed by (15)—(30) is a MILP problem,
which is modeled using Yalmip [38] and solved with Gurobi 8.1
in MATLAB R2018b [39].

B. Case |

In this case, the RMASs’ price bids have the expected value
nearly the same as and the standard deviation lower than those of
the real-time market prices in every hour. No minimum amount
of DRE purchases is set by the retailer, i.e., ¢; , = 0. Table I
shows the RMASs’ price scenarios for hours 9—18. Table Il shows
the expected values and standard deviations of the day-ahead,
real-time, and RMAs’ price scenarios. Initially, the retailer is
considered to be a risk-neutral agent, i.e., 5 = 0. The expected
procurement costs of the retailer from participating in the whole-
sale (i.e., day-ahead and real-time) markets only versus the costs
from participating in the wholesale and liberalized DRE markets
are compared in Fig. 3 for every hour of the operating day.
The hourly cost reduction of the retailer from participating in
the liberalized DRE market in the periods with significant PV
productions is shown in Fig. 4. The results show that the retailer
can always reduce costs in these periods by participating in the
competitive DRE market using the proposed model in Case 1.

To analyze the impact of the risk aversion on the retailer’s
decisions and expected costs, the confidence level « is set to
0.95, and the risk-aversion parameter 3 is varied from O to 10.
The efficient frontier in terms of the total expected cost and
the CVaR of the retailer is depicted in Fig. 5. A risk-neutral
retailer (i.e., # = 0) expects a lower procurement cost with a
higher CVaR. On the other hand, a risk-averse retailer (e.g.,
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TABLE 1
RMAS’ PRICE SCENARIOS IN CASE 1 (%/MWH)
. RMA
Hour | Scenario 1 3 3 7 5 3
9 1 17.01 17.03 | 17.04 | 17.01 17.02 | 17.00
9 2 22.06 | 22,51 | 2240 | 2248 | 22,12 | 22.44
9 3 24.02 | 2387 | 24.56 | 24.56 | 24.50 | 24.53
9 4 25.50 | 2540 | 25.60 | 25.25 | 25.33 | 25.31
10 1 19.56 | 19.84 | 20.06 | 20.05 | 20.04 | 20.02
10 2 23.76 | 24.25 | 2421 | 2421 | 23.83 | 24.18
10 3 2585 | 25.71 | 2645 | 2645 | 26.38 | 2641
10 4 2747 | 2736 | 27.64 | 27.18 | 27.61 | 27.25
11 1 2095 | 20.75 | 1990 | 2045 | 21.01 | 20.15
11 2 21.55 | 21.15 | 21.05 | 2145 | 21.40 | 21.51
11 3 26.15 | 2495 | 2475 | 24.65 | 2595 | 25.25
11 4 29.6 27.95 | 28.80 | 2845 | 30.10 | 28.77
12 | 2295 | 23.50 | 23,75 | 23.85 | 23.20 | 23.90
12 2 2595 | 26,90 | 26.80 | 27.10 | 26.95 | 27.05
12 3 289 28.85 | 29.00 | 29.32 | 28.65 | 29.44
12 4 3345 | 3260 | 3245 | 33.65 | 31.95 | 3412
13 1 2525 | 2395 | 2285 | 2230 | 2471 | 23.75
13 2 26.90 | 2495 | 26.85 | 27.15 | 27.05 | 26.75
13 3 28.55 | 28.10 | 2895 | 28.85 | 29.80 | 28.90
13 4 32.55 | 33.00 | 33.50 | 3295 | 3451 | 34.20
14 1 26.85 | 2590 | 26.80 | 26.75 | 2695 | 26.95
14 2 2945 | 29.55 | 2935 | 29.35 | 29.15 | 2947
14 3 33.80 | 33.60 | 3490 | 3490 | 33.91 | 3435
14 4 3595 | 3645 | 36.55 | 3645 | 3585 | 3645
15 1 28.15 | 27.79 | 28.09 | 27.97 | 28.02 | 27.99
15 2 30.99 | 31.07 | 31.00 | 30.88 | 31.02 | 31.00
15 3 36.27 | 36.12 | 36.05 | 3595 | 36.04 | 35.88
15 4 38.15 | 38.05 | 38.09 | 37.97 | 38.43 | 38.07
16 1 30.50 | 30.30 | 2999 | 30.25 | 3045 | 3041
16 2 32,10 | 32.07 | 32.05 | 32.07 | 31.99 | 32.09
16 3 3745 | 37.12 | 3699 | 37.28 | 37.33 | 37.29
16 4 40.10 | 39.05 | 39.08 | 39.00 | 38.95 | 39.07
17 1 32,78 | 32.57 | 3224 | 32.51 | 32.73 | 32.68
17 2 3415 | 3412 | 3405 | 3414 | 33.93 | 34.09
17 3 40.25 | 3990 | 39.76 | 40.07 | 40.12 | 40.08
17 4 43,10 | 41.88 | 41.01 | 41.92 | 41.87 | 42.00
18 1 29.50 | 28.70 | 28.20 | 29.12 | 28.27 | 29.54
18 2 30.05 | 30.00 | 29.56 | 30.00 | 29.56 | 30.04
18 3 36.22 | 3597 | 3590 | 35.87 | 36.07 | 34.56
18 4 38.99 | 37.70 | 38.00 | 36.72 | 38.26 | 37.79
TABLE I

EXPECTED VALUES AND STANDARD DEVIATIONS OF DAY-AHEAD, REAL-TIME,
AND RMAS’ PRICES IN CASE 1 ($/MWH)

Hour i?n ’JPA j:r.r Jtm i?Mﬁ arRMA
9 22.94 7.44 22.78 7.87 22.30 3.30
10 2545 6.16 24.55 8.47 24.41 291
11 27.64 8.48 24.16 5.66 24.03 347
12 29.65 9.68 28.00 13.46 28.09 3.57
13 31.67 11.14 28.10 14.63 28.18 3.69
14 34.46 13.96 31.98 19.29 31.66 3.90
15 36.78 16.60 34.85 24.07 33.29 4.10
16 39.42 20.42 36.30 26.28 34.71 372
17 41.46 2291 39.00 27.99 37.17 4.03
18 38.08 17.01 34.58 25.75 33.11 3.95

= 10) expects a higher procurement cost with a lower CVaR.
The tradeoff between the expected profit and CVaR should be
carefully considered by the retailer. Fig. 6 shows the impact of
risk management on the retailer’s DRE price bid for the 16th
hour, which corresponds to the period from 3 PM to 4 PM,

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 19,2021 at 18:56:18 UTC from IEEE Xplore. Restrictions apply.



CAMPOS DO PRADO AND QIAO: STOCHASTIC BILEVEL MODEL FOR AN ELECTRICITY RETAILER 2809

Expected Cost of Retailer ($)
B w L h B R @

o
o

=
o

Fig. 3.
350
300

250

(]
(=3
o

Cost Reduction ($)
g

10

o

5

o

Fig.4.

<10

i T T |
~—&— Participate in the wholesale markets only
—¥— Parlicipate in the wholesale and DRE markets

0 5 10 15 20 25
Hours of the Day

Expected costs of the retailer in Case 1.

Hours of the Daaa.r

Hourly cost reduction of the retailer from participating in the liberalized

DRE market in Case 1.

CVaR (§)

=3 o
29
198 199 2 201 202 203 204 205 206 207
Total Expected Cost of Retailer ($) <1058
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Fig. 6. DRE price bids of the retailer versus the expected cost in the 16th hour
for different values of 3 in Case 1.

Day-ahead Market Bid Price ($/MWh)

10 . I | |
100 1560 200 250

Day-ahead Market Bid Capacity (MW)

2

Fig. 7. Day-ahead market curves generated by the retailer in the 16th hour for
different values of 3 in Case 1.

and presents a high variability of the day-ahead and real-time
market prices. As the retailer becomes more risk averse, it offers
a higher DRE price bid in order to purchase more energy in
the competitive DRE market, and less in the volatile electricity
pool. Fig. 7 shows the impact of the risk management on the
retailer’s offering curve in the day-ahead market in the 16th
hour. A risk-neutral retailer is willing to buy power only at lower
day-ahead market prices. On the other hand, a risk-averse retailer
is willing to buy less power at lower day-ahead prices and more
power from DRE, due to the lower variability of DRE prices; and
some power at higher day-ahead market prices, since day-ahead
market prices have lower variability than real-time market prices
in that hour.

C. Case 2

In this case, the RMASs’ price bids have the expected value
higher than and a standard deviation lower than those of the
real-time market prices in every hour. Here, a minimum amount
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TABLE III
RMAS’ PRICE SCENARIOS IN CASE 2 ($/MWH)
. RMA
Hour | Scenario ] 3 3 ! 5 3
9 1 3249 | 32.77 | 32.09 | 32.67 | 3249 | 32.73
9 2 3517 | 3579 | 34.08 | 3581 | 3573 | 3581
9 3 38.48 | 38.58 | 38.76 | 39.17 | 39.09 | 39.17
9 4 41.15 | 41.04 | 41.05 | 41.10 | 41.09 | 41.57
10 1 35.01 | 3532 | 3458 | 35.21 | 35.02 | 35.28
10 2 37.91 | 38.58 | 36.74 | 38.59 | 38.50 | 38.60
10 3 41.67 | 41.58 | 41.77 | 42.21 | 42.13 | 4221
10 4 4435 | 44.26 | 44.24 | 4429 | 44.29 | 4481
11 1 34.35 | 35.00 | 35.15 | 35.05 | 34.75 | 35.05
11 2 37.55 | 38.35 | 3525 | 38.25 | 38.25 | 38.30
11 3 40.85 | 41.15 | 41.70 | 41.85 | 41.55 | 41.80
11 4 44.15 | 44.55 | 44.80 | 4490 | 44.15 | 45.00
12 | 40.05 | 40.00 | 38.15 | 39.70 | 39.60 | 39.85
12 2 42,95 | 43,55 | 4295 | 43.70 | 43.50 | 43.65
12 3 47.25 | 47.15 | 46,95 | 47.80 | 4795 | 47.85
12 4 50.00 | 4925 | 49.00 | 49.00 | 49.85 | 50.05
13 | 38.15 | 39.85 | 39.00 [ 39.20 | 39.60 | 39.05
13 2 41.95 | 43.00 | 42,95 | 41.95 | 42,95 | 42.50
13 3 46.35 | 46.95 | 47.55 46.7 47.40 | 47.50
13 4 48.90 | 49.00 | 49.00 | 48.25 | 49.25 | 4995
14 | 4420 | 4530 | 45.00 | 45.00 | 45.00 | 4525
14 2 48.50 | 48.20 | 49.15 [ 49.00 | 48.70 | 49.00
14 3 52.50 | 52.00 | 52.10 [ 52.70 | 51.35 | 51.95
14 4 55.10 | 54.70 | 55.00 | 5490 | 54.00 | 54.35
15 1 48.25 | 50.05 | 49.30 | 50.00 | 49.15 | 48.35
15 2 5195 | 51.95 | 53.90 | 53.80 | 53.25 | 52.85
15 3 56.15 | 57.00 | 56.15 | 57.80 | 57.95 | 57.45
15 4 58.35 | 58.35 | 58.95 [ 56.95 | 59.50 | 60.00
16 1 52.28 | 52.74 | 51.65 | 52.59 | 52.29 | 52.68
16 2 56.61 | 57.61 | 5486 | 57.63 | 57.50 | 57.64
16 3 61.93 | 62.09 | 6238 | 63.05 | 62.92 | 63.04
16 4 66.23 | 66.07 | 66.07 | 66.15 | 66.14 | 66.91
17 1 54.28 | 54.75 | 53.62 | 54.59 | 54.29 | 54.69
17 2 58.77 | 59.81 | 56.96 | 59.83 | 59.69 | 59.84
17 3 64.29 | 6446 | 64.76 | 6545 | 6532 | 6545
17 4 68.76 | 68.57 | 68.59 | 68,67 | 68.66 | 69.46
18 | 55.67 | 56.16 | 54,99 [ 5599 | 55.68 | 56.09
18 2 60.27 | 61.34 | 5842 | 61.36 | 61.22 | 61.37
18 3 65.94 | 66.11 | 6642 | 67.13 | 66.99 | 67.12
18 4 70.52 | 70.32 | 70.35 | 7043 | 7042 | 71.24
TABLE IV

EXPECTED VALUES AND STANDARD DEVIATIONS OF DAY-AHEAD, REAL-TIME,
AND RMAS’ PRICES IN CASE 2 ($/MWH)

A RT RMA

Hour Apa a} ART af ARMA o}
9 22.94 7.44 22,78 7.87 37.00 3.39
10 25.45 6.16 24.55 8.47 39.88 3.66
11 27.64 R.48 24.16 5.66 39.65 3.82
12 29.65 9.68 28.00 13.46 44,99 3.94
13 31.67 11.14 28.10 14.63 44 .45 4.00
14 34.46 13.96 31.98 19.29 50.12 3.74
15 36.78 16.60 34.85 24,07 54.47 3.87
16 39.42 20.42 36.30 26.28 59.54 5.45
17 41.46 2291 39.00 27.99 61.81 5.65
18 38.08 17.01 34.78 25.75 63.40 5.80

of DRE purchases is set, so that the retailer aims to purchase
a fraction ¢, of the total DRE exported to the local grid
at time f and scenario w. Table III shows the RMAs’ price
scenarios for hours 9—18. Table IV shows the expected values
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and standard deviations of the day-ahead, real-time, and RMAs’
price scenarios. Initially, the risk parameters « and /3 are set to
0.95 and 0.5, respectively. The parameter o ., is varied from
0 to 1. Fig. 8 shows the DRE price offered by the retailer in
hours 9-18 for different values of ¢, ,. The higher the value of
@t w» the higher the DRE price bid offered by the retailer. Fig. 9
shows the retailer’s offering curves in the day-ahead market in
the 16th hour for different values of ¢;¢.,. As the retailer is
willing to buy more DRE, it bids less power in the day-ahead
market.

To analyze the impact of the risk aversion in Case 2, the
value of /3 is varied from O to 10 while keeping o« = 0.95.
The efficient frontier in terms of the total expected cost and
CVaR of the retailer for different values of 8 and ¢, ,, in hours
9-18 is depicted in Fig. 10. The higher the values of S and
©¢ w» the higher the expected cost and the lower the CVaR of
the retailer. The expected cost of the retailer increases since the
expected DRE prices are higher than the expected day-ahead
and real-time market prices. On the other hand, the CVaR of the
retailer decreases since DRE prices have lower variability than
day-ahead and real-time market prices.
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V. CONCLUSION

The next-generation retail electricity markets will have new
business models and market mechanisms designed to better
integrate distributed energy resources into the grid, thus promot-
ing liberalization, competitiveness, sustainability, and increased
customer participation at the grid edge. This paper has presented
a short-term decision-making model for an electricity retailer
participating in a liberalized DRE market. The uncertainties
faced by the retailer include day-ahead and real-time market
prices, client demands, DRE capacity exported to the local
grid, and DRE price bids from the RMAs. Bilevel stochastic
programming has been used to model the reaction of DRE
producers to the price bids received in the proposed liberalized
DRE market. The bilevel nonlinear stochastic program is then
converted into an equivalent single-level linear one by using
the KKT optimality conditions and duality theory. Two cases
of the RMASs’ price scenarios have been studied to show the
effectiveness of the proposed model. The results have shown
that the retailer could reduce its expected cost by participating
in the competitive DRE market when the RMASs’ price bids have
nearly the same expected value as and lower variability than
the real-time market prices. In addition, the retailer’s day-ahead
and real-time market bids as well as the DRE price bids are
significantly affected when the RMAs’ price bids have a higher
expected value than the real-time market prices and a minimum
amount of DRE purchases is set by the retailer. In both cases,
the proposed model provides the optimal decisions for the
retailer under different risk-aversion levels, which have been
modeled by CVaR. Further research can be conducted to study
the decision-making strategies of a single RMA or a group of
RMAs under the proposed liberalized DRE market.

APPENDIX
BILINEAR PRODUCT LINEARIZATION USING DUALITY THEORY

The bilinear product P/)/**A[* in (3) and (9) can be
replaced by an equivalent linear expression by using the du-
ality theory. The dual objective function of each lower-level

2811

problem is:

(AD)

Maximize g ¢

where p; ¢ is the dual variable associated with the equality
constraint (13) of each lower-level problem. This dual variable
is also equivalent to the corresponding Lagrange multiplier
associated with the constraint (13). Based on the strong duality
theorem [40], the optimal solution is obtained by equating the
primal and the dual objective functions as follows:

—PPT | zr0,600" + Z (MR wipe) | =pegs VE Ve
TER
r#0
(A2)
By rearranging the terms in (A2), the bilinear product
Tr0,6ho " can be expressed as follows:

Te0.eho
j e
A DT DRE
:W Z (PL lLV‘E J'Lrg)—f—.u.g,g ,‘v’t?Vf
15
reh
r#0
(A3)

By multiplying both sides of (6) by A//*" and combining the
resulting expression with (A3), the product P,7/*#A[1/*" can be
equivalently replaced by the following linear expression:

DRI, DRE
PL,w Jk'.‘,,[!
o PD'T‘ Nz Ng
HDT, DRE .
PDT Z?TE Z (PL J\'t 7€ ‘I’L‘"E) +nu'£,5 ’
reR
r#0
Vt, Vw, VE (A4)
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