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ABSTRACT

Polycyclic tetramate macrolactams (PoTeM) are a fast-growing family of antibiotic natural
products found in phylogenetically diverse microorganisms. Surprisingly, none of the PoTeM
had been investigated for potential physiological functions in their producers. Here, we used
HSAF (heat-stable antifungal factor), an antifungal PoTeM from Lysobacter enzymogenes, as
a model to show that PoTeM forms complexes with iron ion, with a K, of 2.71*¥10°. The in
vivo and in vitro data showed formation of 2:1 and 3:1 complexes between HSAF and iron
ions, which were confirmed by molecular mechanical and quantum mechanical calculations.
HSAF protected DNA from degradation in high concentrations of iron and H,O, or under UV
radiation. HSAF mutants of L. enzymogenes barely survived under oxidative stresses and
markedly increased the production of reactive oxygen species (ROS). Exogenous addition of
HSAF into the mutants significantly prevented ROS production and rescued the mutants to
normal growth under the oxidative stresses. The results reveal that the function of HSAF is to
protect the producer microorganism from oxidative damages, rather than as an
iron-acquisition siderophore. The characteristic structure of PoTeM,
2,4-pyrrolidinedione-embedded macrolactam, may represent a new iron-chelating scaffold of
microbial metabolites. Together, the study demonstrated a previously unrecognized strategy

for microorganisms to modulate oxidative damages to the cells.
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Importance

Polycyclic tetramate macrolactams (PoTeM) are a family of structurally distinct metabolites
that have been found in a large number of bacteria. Although PoTeM exhibit diverse
therapeutic properties, the physiological function of PoTeM in the producer microorganisms
had not been investigated. HSAF from Lysobacter enzymogenes is an antifungal PoTeM that
has been subjected to extensive studies for mechanism of biosynthesis, regulation and the
antifungal activity. Using HSAF as a model system, we here showed that the characteristic
structure of PoTeM, 2,4-pyrrolidinedione-embedded macrolactam, may represent a new
iron-chelating scaffold of microbial metabolites. In L. enzymogenes, HSAF functions as a
small molecule modulator for oxidative damages caused by iron, H,O, and UV light.
Together, the study demonstrated a previously unrecognized strategy for microorganisms to
modulate oxidative damages to the cells. HSAF represents the first member of the fast
growing PoTeM family of microbial metabolites whose potential biological function has been

studied.

Key Words: natural products, polycyclic tetramate macrolactams, Lysobacter enzymogenes,

oxidative damage, iron binding
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Introduction

Polycyclic tetramate macrolactams (PoTeM) are a family of natural products with diverse
therapeutic properties, including antibacterial, antifungal, anti-protozoa, and anticancer (1-9).
Their structures share a characteristic 2,4-pyrrolidinedione (tetramate)-containing
macrolactam and have been found in phylogenetically diverse bacteria. For example,
ikarugamycin, frontalamides, clifednamides, pactamides, capsimycins, and carbamides were
isolated from various species of Streptomyces (1, 3-5, 8-10). HSAF and several alteramides
were reported from several Lysobacter strains (2, 11-15). Maltophilin and xanthobaccin were
isolated from Stenotrophomonas strains (16, 17). Discodermide and cylindramide were from
marine sponges (18, 19). Umezawamides were from a combined-culture of Umezawaea sp.
and mycolic-acid containing bacterium Tsukamurella pulmonis (20).

The biosynthetic gene cluster (BGC) for several PoTeM have been reported (2, 3, 5,
10-14). Although the chemical structures are complex, the BGC exhibits a relative simplicity
and a conserved organization. In the center of the BGC is always a single-module PKS-NRPS
hybrid gene, which is sufficient to construct the scaffold of PoTeM (10-12, 14, 21-23).
Flanking the PKS-NRPS gene are 2-6 accessory genes, which are responsible for the
structural diversity of PoTeM (14). Cryptic BGCs with this unique organization are present in
numerous genome sequences in the databases, implying that there is an immense reservoir of
PoTeM type of natural products yet to be discovered from the vast number of microorganisms
(3, 9, 10). The therapeutic properties, structural novelty, diverse bioactivities, and distinct

biosynthetic mechanism have attracted a lot of research interests in the recent years. However,

4
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essentially nothing is known about PoTeM’s physiological functions in their producer
organisms.

Many antibiotic metabolites are produced by microorganisms inhabiting in diverse
environments. In their native environments, the metabolites are typically not to function as
antibiotics to kill or inhibit other microorganisms because the producers rarely produce
inhibitory concentrations of the metabolites in the environments (24). Many factors in the
environments could affect the metabolite production and stress response in microorganisms.
For example, reactive oxygen species (ROS) are stimulated in microorganisms when growing
in a high iron environment or other stressed environments. Bacteria have evolved several
strategies to modulate the oxidative stress induced by a high ROS level. The thioredoxin (Trx)
system (NADPH, thioredoxin reductase and thioredoxin) is a crucial antioxidant system in
bacteria. The system removes ROS through providing electrons to thiol-dependent
peroxidases. In most Gram-negative bacteria, glutaredoxin system (Grx) and catalase
provide a strong backup for the Trx system (25). Some catalase-negative bacteria such as
Streptococcus pyogenes mainly utilize the thiol-dependent peroxidase system in defense
against oxidative stress although both Trx and Grx exist (26). Besides, carotenoids and the
aryl polyene type bacterial pigments are proved to protect bacteria from ROS, which is
related to their conjugation double bond systems (27-29). Recently, the H,S-mediated
mechanism was found in protection against oxidative stress in Escherichia coli (30). The
endogenous H»S produced by 3-mercaptopyruvate sulfurtransferase sequestrates free ion,
which is necessary for the genotoxic Fenton reaction (30).

In this study, we have used the small molecule metabolite, HSAF (heat-stable antifungal
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factor), from L. enzymogenes, as a model PoTeM to explore its potential physiological
functions. HSAF and alteramides (Fig. 1) isolated from L. enzymogenes are arguably the most
extensively investigated PoTeM in terms of structural diversity, bioactivities and modes of
action, and molecular mechanisms for biosynthesis (2, 6, 7, 11-14, 31). Here, our results
showed that the characteristic structure of PoTeM, 2,4-pyrrolidinedione-embedded
macrolactam, can act as a new iron-chelating natural product scaffold. HSAF functions as a
small molecule modulator for oxidative damages caused by iron, H;O, and UV light in L.
enzymogenes. Together, the study demonstrated a previously unrecognized strategy for

microorganisms to modulate oxidative damages to the cells.

RESULTS

Formation of brown-orange complexes between HSAF and iron

During the study of L. enzymogenes OH11, we serendipitously found that adding iron salts
into minimal culture media could make OH11 grow more robustly (Fig. Sla). When we
investigated the effect of different concentrations of FeSO4 (0, 1, 10, 100 and 500 pM) on the
growth of OHI1 in a modified minimal medium (M813m) (Figure S1b), we observed
formation of brown-orange substances in both the cultures and the HSAF extracts (Fig. 2a-b).
This color was intensified with the increase of the FeSO,4 concentration and was absent in the
culture or extracts from HSAF mutant (AHSAF) (32), even when grown in M813m
containing 500 puM FeSOs. The result suggested that HSAF and iron ions might be able to
interact with one another and form certain pigment complexes in the culture of OHI1.

Moreover, we found FeSO4 could significantly boost the production of HSAF and alteramides

6
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(Fig. S2). With 1-10 uM FeSO4in M813m, the amount of free HSAF increased about 10-14
folds, compared to the medium without FeSOs,.

To verify the HSAF-iron complexes, we extracted the total PoTeM mixture, containing
both HSAF and its analogs (alteramides), from the cultures. When the mixture was added into
an aqueous solution of FeSOy, the solution turned to the brown-orange color, with a gradually
increased intensity following the increase of the PoTeM mixture, while the controls remained
colorless (Fig. 2c). Furthermore, the same color could be developed in the PoTeM mixture
when added with other iron salts, such as Fe(NH4)2(SO4),, FeCls; and Fe(NOs); (Fig. 2d).
HPLC analysis of the mixtures showed that the PoTeM peaks significantly decreased or
disappeared when any of the iron salts was added to the solutions (Fig. 2e). The interaction
between PoTeM and iron ions appeared to be specific, because HPLC showed that the PoTeM
peaks remained in the solutions, if the mixture was added with other metal ions (Na*, Mg”",
K*, Ca?*, Zn*"), although there might have been some interactions between PoTeMs and Cu®"

(Fig. S3).

Mass spectrometry of HSAF-Fe complexes
The above observations indicated that HSAF and its analogs could form complexes with iron

ions. To obtain direct evidence, we purified HSAF from the OH11 culture and treated HSAF

(10 mM) with the same concentration of aqueous FeSO4, Fe(NH4)2(SO4),, FeCls, or Fe(NO3);.

The products were analyzed by mass spectrometry (MS). Without the iron ion, all MS gave
two main peaks, m/z 513 for [HSAF+H]" and m/z 1025 for [2HSAF+H]"), which are

expected for standard HSAF (Fig. 3). Upon treatment with the iron ion, the HSAF peaks

7
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markedly decreased (when added with ferrous ion, FeSO4 or Fe(NH4)2(SO4)2) or disappeared
(when added with ferric ion, FeCl; or Fe(NO;);). Meantime, two new peaks appeared (m/z
1079 and 1591) when treated with FeSO,4 or Fe(NH4),(SO4), (Fig. 3a-b), or just one new peak
appeared (m/z 1079) when treated with FeCl; or Fe(NO;); (Fig. 3c-d). The peak at m/z 1079
is coincident with [2HSAF-H+Fe]’, whereas the peak at m/z 1591 is coincident with
[3HSAF-H+Fe]". The data showed that two or three HSAF molecules could coordinate with
one iron ion, to form stable HSAF-Fe complexes that displayed the observed orange-brown
color. The data also suggested that all HSAF chelated with Fe when a ferric salt was used, as
seen in FeCl; and Fe(NOs)s, but only a portion of HSAF chelated with iron when a ferrous
salt was used, as seen in FeSO4 and Fe(NHy4),(SO,);, (Fig. 3). Since ferrous iron can gradually
be oxidized to ferric ion in the atmosphere, it is likely that the observed partial chelation in
FeSO, and Fe(NH4)2(SOs), was due to the oxidized iron (ferric). Besides, both 2HSAF-Fe
and 3HSAF-Fe were observed when ferrous salts were used, whereas only 2HSAF-Fe was
detected when ferric salts were used. This also supports that ferric ion is the preferred iron for
HSAF chelation, because the concentration of ferric ion in solution would be lower when
FeSO4 and Fe(NHy),(SO4), were used than that when FeCl; and Fe(NOs); were used, and thus
HSAF concentration was relatively high and two or three HSAF molecules were available to
chelate one ferric ion in FeSO, and Fe(NH4)2(SO.), solutions. To further confirm the
formation of HSAF-Fe complexes, EDTA, a strong chelator for metal ions, was added into
the mixtures of HSAF and iron salts. MS clearly showed that the HSAF-Fe complexes (m/z

1079 and 1591) were abolished and HSAF (m/z 513 and 1025) was restored (Fig. 3).
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Absorbance spectra of HSAF-Fe complexes

Next, we analyzed the absorbance spectra of the HSAF-Fe complexes (Fig. S4). Standard
HSAF gave a maximum peak at ~323 nm, which shifted to ~310 nm upon addition of any of
the iron salts, FeSO4 Fe(NH4)2(SO4)2, FeCls, or Fe(NOs);. While HSAF or the iron salts
barely had any absorption in the visible range, the HSAF-Fe complexes gave clear
absorptions at ~410-600 nm, which apparently contributed to the orange-brown appearance
of the mixtures. Furthermore, the maximal absorption shifted back to 323 nm from 310 nm
and the absorption at ~410-600 nm disappeared, upon addition of EDTA (Fig. S4). The
absorption spectroscopic data are in accordance with that of MS analysis. Using the
UV-visible titration of HSAF with Fe(NOs); and nonlinear curve-fitting at 470 nm, we
obtained the association constant (K;,) of HSAF-Fe to be 2.71*10° (Fig. S5). The K, value is
much smaller than that for recognized siderophores (33), indicating that, rather than function
as a siderophore for iron acquisition from the environment, HSAF in L. enzymogenes may

play a new function during the interaction with iron ion.

Antioxidant activity of HSAF and protection of DNA degradation in vitro

To understand possible roles of HSAF in L. enzymogenes, we explored the potential
involvement of HSAF in modulation of oxidative stress, because it is well known that the
cellular iron could generate reactive oxygen species (ROS) due to the Fenton reaction, which
can lead to cell death (34). The in vivo and in vitro data described above showed the
formation of HSAF-Fe complexes, which might contribute to maintaining a proper free iron

concentration important to redox homeostasis of the bacterial cells.

9
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To test this hypothesis, we used the deoxyribose degradation assay to determine HSAF’s
antioxidant activity (35). HSAF showed a dose-dependent antioxidant activity and behaved as

a strong antioxidant when the concentration reached 80-160 uM (Fig. 4a). The reaction

system for the assay contained deoxy-D-ribose, H,O,, Fe’*, ascorbic acid, and purified HSAF.

To exclude possible direct interactions between HSAF and H,0O,, ascorbic acid, or
deoxy-D-ribose, we analyzed the mixtures using HPLC. As expected, HSAF was not affected
by any of the factors (H,O,, ascorbic acid, deoxy-D-ribose) (Fig. S6). The results indicated
that the antioxidant activity of HSAF resulted from the chelation with iron ion. To confirm
the antioxidant function of HSAF, we carried out in vitro DNA fragment degradation caused
by Fenton reaction due to production of the radical species (36). A DNA fragment with the
length of 1 Kb was amplified by PCR using the genome of L. enzymogenes as template. The
DNA fragment was completely degraded in the presence of Fe’ and H,0,, while the DNA
fragment remained intact in the controls. However, the addition of purified HSAF inhibited
the DNA degradation, in a dose-dependent manner (Fig. 4b). When HSAF reached to 80 uM,
the DNA fragment was fully protected from the Fenton reaction-caused degradation, which is
in good agreement with the antioxidative activity assay (Fig. 4a). To learn whether this
protective effect of HSAF is specific to certain DNA fragments, we tested similar length
DNA fragments from Lysobacter 3655, Lysobacter antibioticus OH13, and Escherichia coli.
HSAF exhibited the similar protective effect against the Fenton reaction-caused damage on

these DNA fragments, showing a general antioxidative effect of HSAF (Fig. S7).

Protection of L. enzymogenes OH11 from high H,O; stress by HSAF in vivo

10
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The observation that HSAF can protect in vitro DNA degradation by H,O, inspired us to
investigate HSAF’s function in vivo. The WT and AHSAF strains were treated with different
concentrations of H,O, in M813m medium. The results clearly showed that the growth rate of
the WT and AHSAF was similar when culture medium contained a low concentration of H,O,
(80 uM), but in the medium containing a high concentration of H,O, (800 uM), the growth
rate of AHSAF strain significantly decreased when compared to that of the WT (Fig. 4c-4e).
Actually, AHSAF strain did not grow in M813m containing 800 uM H,O, in the first 48 h and
started a slow growth only at 72 h, while the WT grown in M813m containing 800 pM H,0,
could reach the similar ODgo values as the WT without H,O, at 72-96 h. We also analyzed
the HSAF level in cultures containing 0, 80 and 800 pM H,0,. It showed that the production
of HSAF/alteramides in the WT with 800 uM H,0O, decreased by 30% when compared to that
of the WT with 0 or 80 pM H,0,, implying a consumption of HSAF for formation of
HSAF-Fe complexes, to protect the cells grown in a high concentration of H,O, (Fig. S8). To
exclude the possibility that HSAF in WT could directly degrade H,O, so that WT could grow
in a high concentration of H,O,, we tested the ability of HSAF and HSAF-Fe complexes to
degrade H,0, in vitro (Fig. S9). The results show that H,O, was not degraded by either
HSAF or HSAF-Fe complexes. Furthermore, MS analysis of the ethyl acetate extract from
the WT culture clearly detected the peaks at m/z 1079 for [2HSAF-H+Fe]" and 1591 for
[3HSAF-H+Fe]’, in addition to m/z 513 for [HSAF+H]" (Fig. S10). This showed HSAF-Fe

complexes were formed in vivo.

Protection of L. enzymogenes OH11 from high iron stress in vivo

11
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Next, we looked into the effect of HSAF on the growth yield of L. enzymogenes OH11 under
different concentrations of iron ion. The WT and AHSAF strains in regular M813m medium
containing 10 uM iron ion exhibited a similar growth yield to that in M813m medium
without iron ion (Fig. S11a-b). However, in M813m containing a high concentration (500 uM)
of iron ion, the growth yield of AHSAF strain was significantly lower than that of the WT
after 72-120 h growth, although both strains exhibited a similar growth yield in the first 48 h
(Fig. S11c). The addition of HSAF to the cultures after 48 h growth restored the growth yield
of AHSAF strain to the WT level in the following 72-120 h growth, even when the iron
concentration was as high as 500 uM (Fig. S11d). The results show that HSAF can protect
OHI11 cells from high iron stress in vivo. Besides, the exogenously added HSAF-Fe
complexes, but not HSAF alone, could promote the growth of WT strain in M813m medium
without supplemented FeSO4 (Fig. S12a). However, neither HSAF nor HSAF-Fe complexes
affect the growth of WT strain in regular M813m medium containing FeSO4 (Fig. S12b). The
results suggested that iron ion could be released from HSAF-Fe complexes and then up-taken

by the cells to support the observed growth promotion.

Protection of L. enzymogenes OH11 from UV radiation by HSAF

In light of HSAF’s protection of L. enzymogenes from oxidative damages induced by high
concentrations of iron and H,O,, we looked into the protective role of HSAF when the cells
were exposed to UV radiation, because UV exposure can also lead to a variety of ROS
through various mechanisms (37). When the WT and AHSAF strains were exposed to the UV

light for a short time (10 s), the survival rates of the WT and AHSAF cells were similar.

12
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However, the survival rate of AHSAF cells was significantly decreased when the UV
exposure time increased to 30 s, and there was nearly zero colony on the plate with 60 s of
UV exposure, while the WT still had a large number of colonies (Fig. 5a, S13a). On the other
hand, the exogenous addition of purified HSAF to the AHSAF culture before the UV
exposure could restore the growth. The rescue of the AHSAF cells by HSAF showed a clear
dose-dependent manner, and when the HSAF concentration reached 160 pM, the survival rate
of AHSAF was even higher than that of the WT (Fig. 5b, S12b). The results unequivocally

showed the protective effect of HSAF on cells with UV radiation.

Repression of ROS accumulation in L. enzymogenes OH11 by HSAF

Next, we tested the ROS formation in the strains using the method of H2DCFDA
(2°,7’-dichlorodihydrofluorescein diacetate), which is a cell-permeant indicator that generates
fluorescence after oxidation by ROS (38). The results showed almost no detectable ROS in
the WT and AHSAF strains when cultured in the minimal medium without iron ion, and a low
level of ROS production similarly in the WT and AHSAF strains in the modified medium
containing a low level of iron (M813m containing 10 uM FeSOy) (Fig. 5¢). In a high iron
medium (M813m containing 500 pM FeSO,4), AHSAF strain produced nearly a double
amount of ROS than the WT, although the ROS level increased significantly in both the WT
and AHSAF. Remarkably, when exogenous HSAF was added to the AHSAF strain grown in
the 500 uM FeSO,4 medium, the ROS level returned to the WT level. The results clearly
showed that HSAF is able to repress the high iron-caused ROS production (Fig. 5c).

Moreover, the ROS level in AHSAF was about 2 fold higher than that in the WT, when
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treated with H,O, or UV lights, and the exogenous HSAF restored the WT level of ROS in
AHSAF strain (Fig. 5d-e). Next, we directly measured the ROS scavenging activity of HSAF
and HSAF-Fe complexes using DPPH (2,2-Diphenyl-1-picrylhydrazyl), which is a stable
radical and has the maximum absorption at 520 nm. The results showed that HSAF and
HSAF-Fe complexes exhibited low ROS scavenging activity when the incubation time was
0.5 h, while with the extension of incubation time (24 h, 72 h and 120 h), the ROS
scavenging activity of both HSAF and HSAF-Fe complexes increased (Fig. S14a-b). As
expected, ascorbic acid showed strong ROS scavenging activity (Fig. S14c). This is
consistent with the observation in the UV irradiation assay, where the cultural time was 72 h
and HSAF exhibited ROS scavenging activity. The data clearly showed the ROS modulating

ability of HSAF in L. enzymogenes.

Molecular structure of HSAF-Fe complexes

To obtain further evidence for formation of the HSAF-Fe complexes, we performed
molecular mechanical and quantum mechanical calculations to determine the possible
molecular structures of the HSAF-Fe complexes. Using a molecular mechanical force field
method, a global search suggested that both Fe*" and Fe** ions can be chelated by 2 or 3
HSAF neutral molecules. Quantum mechanical method was used to refine the molecular
geometries (Fig. 6). When 2 molecules of HSAF bind to an iron ion, the 3 carbonyl oxygen
atoms (at C7, C25, C27, see Fig. 1) of each of the two HSAF molecules form 3 coordinate
bonds to the iron. When 3 molecules of HSAF bind to an iron ion, two HSAF molecues

provide the oxygen atoms at C7 and C27, and the third HSAF molecule provides the oxygen
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atoms at C25 and C27. Together, the three HSAF molecues form 6 coordinate bonds to the
iron. Due to steric factors, it would be impossible for 4 molecules of HSAF to bind to one
iron. The carbonyl oxygen atoms at C7, C25 and C27 are absolutely conserved in all PoTeMs,
suggesting that formation of such iron complexes are general for all PoTeMs. The chelation
status is similar to that of Pseudomonas quinolone signal (PQS) with iron ion, in which two

or three PQS molecules chelated one iron ion (39).

DISCUSSION

Since the isolation of HSAF and its analogs from Lysobacter enzymogenes, the research has
focused on their antifungal activity, as well as the molecular mechanism for their biosynthesis
and regulation. The work presented here is the first attempt to address the role of these
complex molecules in their producer organism. Lysobacter species are emerging as a rich
source of bioactive natural products. During our efforts to activate silent biosynthetic gene
clusters in the genomes of Lysobacter species, we serendipitously found that the addition of
iron salts enhanced HSAF production. Meantime, we observed the formation of a
brown-orange color when iron salts were added to the cultures that produced HSAF and
analogs, but not in the biosynthetic mutant. /n vitro studies using the crude extracts and
purified HSAF confirmed that the color was due to formation of complexes between these
compounds and iron. The results also showed that the production of HSAF and analogs is
essential for L. enzymogenes to survive under oxidative conditions that are known to generate
reactive oxygen species (ROS).

When L. enzymogenes was exposed to a high concentration of iron, H,O,, or UV
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radiation, the HSAF biosynthetic mutant was barely able to survive, while the wild type and
the mutant supplemented with HSAF exogenously could grow normally. In bacteria, ROS are
induced by many stresses including presence of a high iron concentration, H,O, treatment,
and UV radiation (40). Indeed, we observed a significantly higher level of ROS production in
the HSAF mutant than in the wild type. The supplement of HSAF into the mutant reduced the
ROS level to that of the wild type.

We also observed that HSAF protects DNA from degradation in the presence of iron and
H,0,, probably due to hydroxyl radical (OH), generated by Fenton reaction [Eq. (1)].
Hydroxyl radical is highly reactive ROS and able to oxidize practically every molecule in the
cell (41, 42).

H,0,+Fe** —* "OH++OH+Fe™ (1)

In both prokaryotes and eukaryotes, the oxidative DNA damage caused by hydroxyl
radical is the primary cause of cell death under oxidative stress conditions (43-45). We thus
hypothesized that HSAF may be involved in Fenton reaction and affect the redox
homeostasis of L. enzymogenes. In bacteria, both O* and H,0, are primarily produced by
the accidental autoxidation of non-respiratory flavoproteins which are univalent electron
donors giving electrons to oxygen (46). Besides, a high iron concentration also could promote
the H,O, generation. In deoxyribose degradation assay, ascorbic acid initializes the Fenton
reaction by reducing Fe** to Fe?', and Fe’" in turn reacts with H,0, to generate ROS (*OH)
[Eq. (1)] (35). In the in vitro assay of DNA fragment degradation, Fe’" could be reduced to
Fe”" through reacting with H,O,, by following the two-step reactions [Eq. (2)-(3)] (47). The

reactions generate Fe”” and then ROS by the reaction between Fe’" and H,0, as shown in Eq.
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(1).

H,0, + Fe’* —* Fe-OOH*" + H' )

Fe-OOH*" —* HO, + Fe*" 3)

As shown in Fig. 2, HSAF prefers ferric ion over ferrous ion in the chelation. The
HSAF-Fe’" chelation would prevent the reduction of Fe’ to Fe*" in the two-step reactions
[Eq. (2)-(3)]. Consequently, the sequestration of Fe’™ ion by HSAF would result in a reduced
amount of free Fe*' in the cells and in turn a reduced ROS from the Fenton reaction. The K,
value of HSAF-Fe complexes is significantly smaller than that of typical siderophores. This
suggests that a relatively high concentration (uM level) of HSAF would be needed in order to
form stable complexes with iron. HSAF and alteramides are the predominant secondary
metabolites in L. Enzymogenes (2). We were able to obtain up to 50 mg HSAF from 1 L
culture, suggesting that the concentration of HSAF in the cells would be higher than 100 pM.
Thus, the concentration at which HSAF exhibited iron-chelation and strong antioxidant
activity in vitro could be readily achievable in vivo.

Moreover, we showed that the exogenous addition of HSAF into the culture media could
restore the AHSAF mutant’s growth under high iron concentrations, H,O,, and UV radiation;
we also showed that the exogenous HSAF was able to make the ROS level in the AHSAF
mutant return to the WT level, even when grown in the 500 uM FeSO4 medium. Together,
these observations implied that extracellular HSAF was able to enter the cells. However, the
exact mechanism of HSAF transportation is not totally clear at the moment. Beyond chelating
iron, HSAF can also scavenge ROS directly as seen in Fig. Sc-e and Fig. S14a-b. These

explain the protective effect of HSAF on Lysobacter with UV exposure (Fig. 5a-b).
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Although HSAF is able to chelate iron, the HSAF-Fe complexes form only when the iron
concentration is sufficiently high (above uM level). This is in contrast to siderophores whose
primary function is to grab metal ions from the environments where the concentration of the
metals can be extremely low. HSAF functions as a modulator for oxidative stresses only
when the cells are exposed to an environment with a high concentration of iron, H,O,, or
exposed to UV light, all of which can lead to ROS generation that damages DNA and cell
survival.

Moreover, our study using methods in molecular mechanical force field and quantum
mechanical indicated that the carbonyl groups at C7, C25 and C27 of HSAF structure are
involved in formation of the HSAF-Fe complexes. These carbonyl groups are absolutely
conserved in all PoTeMs. This finding is significant becasue it suggests that formation of
such iron complexes could be general for all PoTeMs. On the other hand, there is a clear
structural diversity among the PoTeM family, which is derived from the polycyclic system
(14). While HSAF and alteramides are known for antifungal activity, other members of the
PoTeM family exhibit antitumor, antiprotozoal, cytotoxic, and antiviral activities. The
structural diversity of PoTeMs may be associated with these activities and may also confer
survival advantage to their producers in various habitats. For example, L. enzymogenes OH11
was originally isolated from the rhizosphere of a pepper plant (32). Whether HSAF and
alteramides play a role in plant root colonization is worth a further investigation, as resistance
to oxidative stress is important for the survival of bacteria during their interaction with plants.
It is not very clear what structural features in these compounds are associated with the

antifungal activity, although we found the carbonyl oxygen atoms at C7, C25 and C27 are
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involved in the iron chelation to form HSAF-Fe complexes. L. enzymogenes can produce
HSAF and analogs without iron and with iron in the minimal media (up to 500 uM). In reality,
it is unlikely that the iron concentration in the natural environment of L. enzymogenes would
be higher than what we have tested. Several iron chelators have exhibited antifungal activity,
such as siderophores produced by Azospirillum brasilense could inhibit the growth of
Colletotrichum acutatum and the siderophore oxachelin from Streptomyces sp. GW9/1258
showed strong antimicrobial activity against several fungi and Gram-positive bacteria (48,
49). Further studies are needed in order to answer whether the antifungal activity and the
antioxidant activity are related to each other or exclude each other. Nevertheless, it seems
reasonable to assume that the antioxidant activity of HSAF and analogs could enhance the
survival rate of the producer microorganism through the enhanced resistance to oxidative
stress and thus play a role in plant root colonization during their interaction with plants.
Several strategies are evolved in bacteria to modulate the oxidative stress (25-30).

In summary, HSAF has been recognized as an antifungal antibiotic with a fascinating
chemical structure, new mode of action, and distinct mechanism for biosynthesis (2, 6, 7, 31).
Here, we presented evidence to support that HSAF and its analogous compounds may
represent a new strategy for microorganisms to modulate the oxidative stress. These
“secondary metabolites” confer L. enzymogenes to survive in the environment with a high
concentration of iron, H,O, or UV radiation. HSAF is the first member of the fast growing
PoTeM family of natural products whose potential biological function has been investigated.
The genome mining efforts have shown a strikingly conserved organization for PoTeM

biosynthetic clusters, which are present in a large number of unexplored genomes of
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phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes (3, 10, 14).
This means there are a large number of new PoTeMs yet to be explored. The understanding
the biological function of HSAF shed new lights into the critical role of “secondary
metabolites” in the survival of microorganisms in complex ecosystems, and the results will

also facilitate the future efforts in new PoTeM exploitation.

MATERIAL AND METHODS

Bacterial cultures, primers and PCR

The wild type strain Lysobacter enzymogenes OH11 (CGMCC No. 1978) and the HSAF
biosynthetic mutant AHSAF (Table 1) were cultured in Luria-Bertani (LB) medium (32). For
the production of HSAF and its analogs, the strains were cultured in M813 modified medium
(4 g Glucose, 3 g K,HPO4, 1.2 g NaH,PO4, 1 g NH4CI, 0.3 g MgSOs, 0.15 g KCI, 10 mg
CaCly, 2.8 mg FeSO47H,0, per liter) (50). In the initial experiments, the strains were also
cultured in MM2 medium (4 g Glucose, 15 g KH,PO4, 34 g Na,HPO4, 5.4 g NH4CL, 2.5 g
NaCl, 0.3 g MgS04, 10 mg CaCl,, per liter). Table 2 listed the primers used in this study.
Phusion High-Fidelity DNA polymerase (Thermo Scientific) was used as the amplification
enzyme. The PCR started from an initial denaturation at 98°C for 30 s followed by 30 cycles
of amplification (98°C for 10 s, 60°C for 15 s, 72°C for 1 min), and completed with
additional 5 min at 72°C. Depending on the DNA templates and primers, the annealing

temperature and the elongation time were adjusted in some case
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Extraction and HPLC analysis of HSAF and its analogs

L. enzymogenes OH11 wild type (WT) and HSAF deficiency strain (AHSAF), in which a part
of pks-nrps gene (from +232 bp to +1356 bp with relative to the start codon) of HSAF
biosynthetic gene cluster was deleted (32), were incubated into 1 ml LB at 30°C with shaking
of 200 rpm for overnight. An aliquot (1%) of the cultures was transferred to 25 ml M813
modified (M813m) medium with variable concentrations of FeSO, (final concentration of 0,
1, 10, 100 and 500 uM), 30°C with shaking at 200 rpm for 48 h. The whole cultures (cells
and medium) were treated with 75 pl TFA and 25 ml ethyl acetate. The organic phase was
dried with the air flow, and the residues were re-dissolved in 200 pl methanol. A 2 pl aliquot
of each extract was analyzed by HPLC (Agilent, 1220 Infinity LC). Water/0.05% FA (solvent
A) and acetonitrile/0.05% FA (solvent B) were used as the mobile phases with a flow rate of
1.0 ml/min. The HPLC program was as follows: 5-25% B in 0—5 min, 25%-80% B in 5-25
min, 80—-100% B in 25-26 min, maintained to 28 min, back to 5% B at 29 min and
maintained to 30 min. HSAF and its analogs were detected at 318 nm on a UV detector. For
purification of HSAF, WT was incubated into 10 ml LB at 30°C with shaking at 200 rpm for
overnight. An aliquot (1%) of the cell cultures was transferred to 1 L M813m medium and grew
at 30°C with shaking at 200 rpm for 48 h. The culture broth was adjusted to pH 2.5 with 37%
HCI. The culture was added with the same volume of ethyl acetate, and HSAF was extracted
into the organic phase for three times. The ethyl acetate phase was dried using a rotavapor, and
HSAF was separated from other metabolites in the extract (850 mg) on a C18 reverse-phase
column, eluted with different concentrations of methanol (10%, 30%, 50%, 70%, and 100%).

The fraction (552 mg) of 100% methanol was used to purify HSAF (~50 mg) by HPLC.
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Chelation of HSAF with metal ions

For the chelation with FeSOy, an increased volume (1, 10, 50 pl, in methanol) of the total
PoTeM mixture (2 mg/ml) was mixed with 100 pl aqueous solution of FeSO4 (10 mM). For
the chelation with other iron salts, the total PoTeM mixture (50 pl, 2 mg/ml) was incubated
with 50 pl aqueous solution of Fe(NH4)2(SO4),, FeCls, and Fe(NOs3)s (each 10 mM). For the
chelation with other metals, the total PoTeM mixture (50 pl, 0.5 mg/ml) was incubated with
50 ul aqueous solution of Na;SO4, MgSOy4, K,SO4, Ca(NO3),, CuSO4, and ZnSO4 (each 10
mM). Methanol was used as control. For HPLC analysis, the above mixed solutions were
dried and then resuspended in 100 pl methanol. A 20 pl aliquot of each of the solutions was
analyzed by HPLC (Agilent, 1220 Infinity LC). The HPLC program was as follows:
Water/0.05% FA (solvent A) and acetonitrile/0.05% FA (solvent B) were used as the mobile
phases with a flow rate of 1.0 ml/min. The program was as follows: 5%-60% B in 0—5 min,
60%-100% B in 5—20 min, maintained to 23 min, back to 5% B at 28 min, and maintained to
30 min. The metabolites were detected at 230 nm on a UV detector. The experiments were

repeated for three times.

MS analysis and UV-Visible absorbance spectra of the HSAF-Fe complexes

To prepare the complexes, purified HSAF (20 ul,10 mM) was mixed with an equal volume of
each of aqueous FeSOy4 (10 mM), Fe(NH4)2(SO4)2 (10 mM), FeCl; (10 mM), and Fe(NOs);
(10 mM). Each of the mixtures was dried and re-suspended in 200 pl ddH,O. Ethyl acetate

(200 pl, containing 0.05% TFA) was added to the suspension to extract the HSAF-Fe
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complexes, and the organic phase was collected and dried and re-dissolved in 1 ml methanol.
A 20 pl aliquot of each of the samples was analyzed by MS and the remaining fraction of the
samples was used to determine the UV-visible absorbance spectrum by a spectrophotometer
(Shimadzu UV-Vis 2501). After the spectra were taken, 50 ul Na,EDTA (100 mM, pH 8.0)
was added into each of the samples, and the samples were dried and re-suspended in 250 pl
ddH»O. Similar to the above procedure, the HSAF-Fe complexes were extracted with 250 pl
ethyl acetate (containing 0.05% TFA), the organic phase was collected and dried and
re-dissolved in 1 ml methanol. Then samples then were similarly analyzed by MS and

spectrophotometer again. The experiments were repeated for three times.

UV-Visible absorbance titration and association constant determination
To determine the association constant, absorbance spectra were recorded with a
spectrophotometer (Shimadzu UV-Vis 2501). The UV-Visible titration assay was performed
by using a constant host concentration of HSAF (0.1 mM) and variable concentrations of
Fe(NOs); at 25°C. Association constant (K,) was calcualted using Eq. (4) by applying a
nonlinear curve-fitting method (51) on Program of origin 9.0 to changes in absorbance (AAbs)
at 470 nm.

AAbs=(L(1+ K X+K,A)-(LA(KX+KA+1) 4K 2AXLY ) 2K,A (4)

Where X and A were the total concentration of the guest and the host, respectively, and L

and K, were treated as parameters. The experiments were repeated for three times.

Assay for deoxyribose degradation
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This assay was used to determine the antioxidative activity. In the assay, hydroxyl radicals
generated by the Fenton reaction would degrade deoxy-D-ribose into malonyldialdehyde
(MDA) (35). MDA then would react with 2-thiobarbituric acid to produce a pink pigment,
which was determined photometrically at 532 nm (34). To perform the assay, 227.5 pl
variable concentration of purified HSAF (final concentration is 0, 5, 10, 20, 40, 80, and 160
uM) were added into the reactant mixture containing 45.5 ul Deoxy-D-ribose (52 mM, in 50
mM KH,PO4, pH 7.4), 91 ul FeCl; (4 uM, in water), 91 ul KH,PO4 buffer (pH 7.4), 45.5 ul
H,0; (10 mM, in water), and 45.5 pl ascorbic acid (1 mM, in 50 mM KH,POy4, pH 7.4). The
samples were mixed and incubated at 30°C for 60 min. After that, 455 pl 2-thiobarbituric acid
(1%, in 3% trichloroacetic acid) was added into each of the samples, and the mixtures were
incubated at 85°C for 30 min. The supernatant of each of the mixtures was collected
following centrifugation (12,000 rpm, 1 min), and the ODs3; value of the supernatants was
determined by spectrophotometer (Shimadzu UV-Vis 2501). The experiments were repeated

for three times.

Assay for in vitro DNA degradation

The assay followed a previously described method with some modifications (36). The DNA
fragments were obtained by PCR using primers listed in Table S2 with a template from the
genomic DNA of L. enzymogenes OH11, Lysobacter 3655, L. antibioticus OH13, or E. coli.
Each of the degradation mixtures contained 100 ng DNA fragment, 20 mM H,0,, 150 pM
FeCl; and various concentrations of purified HSAF (0.3125, 0.625, 1.25, 2.5, 5, 10, 20, 40

and 80 pM) in 50 mM KH,PO; buffer (pH 7.4). After incubating the mixtures at 37°C for 60
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min, the samples were applied to 0.8 % agarose gels in TAE buffer. The electrophoresis was
performed at 140 V for 15 min, and the bands were visualized in a UV transilluminator

(Universal Hood, Bio-Rad). The experiments were repeated for three times.

OH11 growth under oxidative stress induced by H,O;

WT and AHSAF strains were incubated into 1 ml LB at 30°C with shaking of 200 rpm for
overnight. A fraction (1%) of the cultures was transferred to 25 ml M813m medium at 30°C
with shaking at 200 rpm for 48 h. After the ODgoy value of each of the cultures was
determined, a fraction (1%) of the cultures was added into 25 ml M813m medium containing
0, 80, or 800 uM H,O,, and the cultures were incubated at 30°C with shaking at 200 rpm for
96 h. The ODgyy values of WT and AHSAF strains were recorded every 24 h. The

experiments were repeated for three times.

Assay for in vitro H,O, degradation

The Hydrogen Peroxide (H,O,) Colorimetric Assay Kit (Elabscience, China) was used to
detect the concentration of HO, which could react with ammonium molybdate and produced
a yellow complex with the maximum absorption at 405 nm. The reaction system contained 2
ml reaction buffer, 100 ul H,O, (60 mM), and 100 ul purified HSAF (4 mM) or 100 pl
purified HSAF-Fe complexes (4 mM). Methanol was used as negative control. The reaction
system was incubated at 30°C for 30 min, then the OD4ys value was determined by

spectrophotometer.
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OH11 growth under oxidative stress induced by UV light

For the WT and AHSAF of L. enzymogenes OH11, the strains were incubated into 1 ml LB at
30°C with shaking at 200 rpm for overnight. A fraction (1%) of the cultures was transferred
to 25 ml M813m medium at 30°C with shaking at 200 rpm for 48 h. The cultures were
adjusted with the medium to the same ODgyy of 1.5 and a fraction of 10 ml of each of the
cultures was spread on a petri dish (9.0 cm, external diameter) and exposed to a UV light
source (253.7 nm, Model TUV 30W T8, 102 Volts, 0.37 AMPS, 30 Watts), at a distance of 30
cm between the light and the cells for 0 s, 10 s, 30 s or 60 s. For the complementary assay,
purified HSAF with a various concentration (final concentration of 0, 20, 80 and 160 uM)
was added into the culture of AHSAF strain before exposure to UV for 60 s, and methanol
was used as control. The cultures were serially diluted and spread on fresh LB plates. The
numbers of colonies on each plate were counted after 72 h of incubation at 30°C. The

experiments were repeated for three times.

ROS detection

The production of ROS in WT and AHSAF strains were detected using a previous method
with some modifications (38). WT and AHSAF strains were incubated into 1 ml LB, 30°C
with shaking of 200 rpm for overnight. A fraction (1%) of the cultures was transferred into 25
ml M813m medium with various concentrations of FeSO4 (0, 10, 500 uM). After 72 h of
growth, the cultures were diluted 30-fold with the same medium in a 96-well plate. Then
H2DCFDA was added to the wells with a final concentration of 10 uM. The incubation of the

plate continued in the dark at 30°C with shaking at 60 rpm for 6 h. Fluorescence was
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measured in a BioTek Synergy H1 plate reader (excitation, 495 nm; emission, 527 nm). In
addition, the cultures of WT and AHSAF from regular M813m medium containing 10 uM
FeSO, were treated with UV for 60 s without or with purified HSAF (final concentration 160
uM), or treated with H,O; (final concentration 40 mM) before fluorescence detection. The

experiments were repeated for three times.

Assay for ROS scavenging activity of HSAF and HSAF-Fe complexes

HSAF and HSAF-Fe complexes were tested for in vitro ROS scavenging activity using
DPPH (2,2-Diphenyl-1-picrylhydrazyl) which is a stable radical and has the maximum
absorption at 520 nm. In reaction system, 1 ml DPPH (5 mg/ml, dissolved in ethanol) was
mixed with 200 pl various concentration of purified HSAF or HSAF-Fe complexes (final
concentration was 0 pM, 20 uM, 40 pM, 80 uM and 160 pM, dissolved in ethanol), and then
incubated at room temperature for 0.5 h, 24 h, 72 h and 120 h. The ODs; value of samples
was determined by spectrophotometer, which was used to calculate the remaining DPPH, by
following the formula: DPPH (%) = A/A¢*100%, A, represents the ODsyy value of 0 uM.

Ascorbic acid was used as positive control and the ODs,¢ value was determined immediately.

Extraction of the HSAF-Fe complexes in vivo

WT was incubated into 1 ml LB, 30°C with shaking at 200 rpm for overnight. A fraction (1%)
of the cultures was transferred into 50 ml M813m medium containing 500 uM FeSQO,, and
incubated at 30°C with shaking at 200 rpm for 48 h. After centrifugation (12,000 rpm, 5 min),

the precipitate presented as two layers, and the upper layer was collected and extracted with
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50 ml ethyl acetate (containing 0.3% TFA). The organic phase was dried and re-dissolved in
200 pl methanol. The methanol solutions were used for MS analysis. The experiments were

repeated three times.

Molecular mechanical and quantum mechanical calculations

The calculations were performed with the quantum chemistry polarizable force field
(QuanPol) (52) program and the General Atomic and Molecular Electronic Structure System
[GAMESS (53, 54)] package. The MMFF94 force field (55-58) was used in the global search
of the most stable molecular structures. In the global search, one million steps (time step size
= 1 fs) of molecular dynamic simulation were performed at 700 K, with a geometry
optimization at every 1000 steps. Using the MMFF94 identified minimum structures,
quantum mechanical density functional theory method B3LYP (59, 60) [with Grimme’s
empirical dispersion correction version III (61)] was used to refine the molecular geometries.

The 6-31G* basis set (62) was used.
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Table 1. Bacterial strains used in this study.

Bacterial strains Relevant characteristics” Source/reference
Lysobacter
L. enzymogenes OH11 Wild-type, Kan" CGMCC No. 1978
AHSAF HSAF deficiency strain (32)

“Kan', kanamycin resistant.

Table 2. Primers used in this study.

Primers Sequence(5°-3)

OHII-F CGGGGCCCCATTGGAACGACAGCCTCTT
OHI1-R CCGCTCGAGCGGCAAGACAGGGGAAGA
3655-F CGGGGCCCTTTGGTTGTTCCATCCGA
3655-R CGGGATCCATCGAGGAGCACGGCATC
OHI13-F CTGCAGGACTTCGAACACA

OH13-R GATTGACTCCTTGGTGCTC

E-F ATAACGGAGAACGGAATCG

E-R ACGCATTACTATCTGACCAA
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Figure Legends

Figure 1. Chemical structure of HSAF and analogs (alteramides) isolated from Lysobacter
enzymogenes.

Figure 2. Formation of PoTeM-Fe complexes. a) Appearance of cultures of L. enzymogenes
OH11 wild type (WT) and HSAF non-producer mutant (AHSAF) grown in M813m medium
containing a different concentration of FeSO,4. b) Appearance of the total crude extract of
PoTeM (200 pl) from cultures (25 ml) of WT and AHSAF grown in M813m containing a
different concentration of FeSOa. c¢) Color change in the solution of FeSO4 (10 mM, 100 pl)
when added with the total crude extract of PoTeM (1-50 pl, 2 pg/ul) from WT cultured in
MS813m containing 10 pM FeSO,, with methanol as negative control. I, positive control
(crude extract of PoTeM from WT grown in M813m containing 500 pM FeSOy). d) Color
change in the solution of various iron salts (10 mM, 50 pl), without (0) or with 50 pl
methanol (II) or with 50 pl (2 pg/pl) of the total crude extract of PoTeM (III). ) HPLC
analysis of the isolated PoTeMs, with or without iron salts added.

Figure 3. MS analysis of the products of HSAF with FeSO, (a), Fe(NH4)2(SO4), (b), FeCls (¢)
and Fe(NOs); (d), in absence or presence of the metal chelator EDTA. Standard HSAF gave
m/z 513 for [HSAF+H]" and m/z 1025 for [2HSAF+H]"). In the mixtures of HSAF and iron
salts, the peak at m/z 1079 was coincident with [2HSAF-H+Fe]', whereas the peak at m/z
1591 was coincident with [3HSAF-H+Fe]".

Figure 4. The in vitro antioxidant activity and the in vivo protective effect of HSAF for L.

enzymogenes grown in the presence of H,O,. a) In vitro deoxy-D-ribose degradation assay for
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the antioxidant activity of HSAF. The activity is presented as thiobarbituric acid reactive
species (TBARS) levels relative to the control (100% = TBARS of the control reaction
mixture without HSAF). b) In vitro assay of the Fenton reaction-caused DNA fragment
degradation and the protective effect of HSAF. c-e) /n vivo H,O; sensitive assay of the WT
and AHSAF strains cultured in M813m medium containing 0 (c), 80 (d) , or 800 uM (e) H,O,,
and the ODggo value was determined every 24 h. Data are presented as averages of three
independent experiments each conducted in triplicate. *, P <0.05; **, P <0.01.

Figure 5. The protective effect of HSAF for L. enzymogenes exposed to UV light and ROS
level in L. enzymogenes under oxidative stress. a) The WT and AHSAF strains were exposed
to UV light for 0, 10, 30, and 60 s, and the numbers of colonies on each plate were counted
after 72 h of incubation at 30°C. b) Rescue of the UV-light sensitivity of AHSAF strain by
exogenous HSAF. AHSAF strain was added with a variable amount of HSAF (0, 20, 80, 160
uM) and then exposed to UV light for 60 s. ¢) ROS level in the WT and AHSAF strains
cultured in different media. No Fe, M813 minimal medium without FeSO,4; M813m, M813
modified medium containing 10 uM FeSO,; High Fe, M813 modified medium containing
500 uM FeSOs. d) ROS level in the WT and AHSAF strains treated with 40 mM H,0,. e)
ROS level in the WT and AHSAF strains treated with UV light for 60 s. Methanol was used
as control. Data are presented as averages of three independent experiments each conducted
in triplicate. *, P < 0.05; **, P <0.01.

Figure 6. Molecular structure of HSAF-Fe complexes obtained from the molecular
mechanical force field method and quantum mechanical method. Two molecules (a) or three

molecules (b) of HSAF can chelate one iron ion.
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Figure 1.
(0]
R
H
NH
OH oH ©
R=0OH: HSAF R=0H: Alteramide A
R=H: 3-deOH HSAF R=H: 3-deOH Alteramide A

W

R=OH: Alteramide B R=OH: Alteramide C
R=H: 3-deOH Alteramide B R=H: 3-deOH Alteramide C

Figure 1. Chemical structure of HSAF and analogs (alteramides) isolated from Lysobacter

enzymogenes.

41

NTOONIT-¥YMSYHE3AN 40 AINN ¥ 1202 ‘L€ Udle uo /Biowise wae//:dpy wolj papeojumod



(1)
=
=
O
o
(1)
——
(72
(@)
o
——
(O
=
\9)
(2]
=)
(=
=
o
(1)
——
Q
(19)
\9)
\9)
<L

Microbiology

Microbiology

847

848

849

850

851

852

853

854

855

856

857

858

859

Figure 2.

(a)

FeSO, (M)

WT
AHSAF

(b) OH11 WT AHSAF
FeSO, (uM) 500

AFAL

(c) 0 1 10 50

MeOH (ul)

|
HSAF and & 1
alteramides
(7))

(d)

0 I}

Fe(NH,),(SO,),
FeCl,

Fe(NO;),

(e)
mAU
2250 1 HSAF-— ) - alteramides

4500
2950 1 HSAF+aIteramldes+ FeSO4

3

4500 HSAF+alteramides+FE(NH4)2(S°4)2

A

- e

ggog HSAF +alteramides+Fe(NO,);

SR !

45001HSAF+aIteramides+FeCI3
0

5 10 15 20 25 30
Time (min)

Figure 2. Formation of PoTeM-Fe complexes. a) Appearance of cultures of L. enzymogenes

OH11 wild type (WT) and HSAF non-producer mutant (AHSAF) grown in M813m medium

containing a different concentration of FeSO4. b) Appearance of the total crude extract of

PoTeM (200 pl) from cultures (25 ml) of WT and AHSAF grown in M813m containing a

different concentration of FeSO,. c¢) Color change in the solution of FeSO4 (10 mM, 100 pl)

when added with the total crude extract of PoTeM (1-50 pl, 2 pg/ul) from WT cultured in

M813m containing 10 pM FeSO,, with methanol as negative control. I, positive control

(crude extract of PoTeM from the WT grown in M813m containing 500 pM FeSQOy). d) Color

change in the solution of various iron salts (10 mM, 50 pl), without (0) or with 50 pl

methanol (II) or with 50 pl (2 pg/ul) of the total crude extract of PoTeM (III). ) HPLC

analysis of the isolated PoTeMs, with or without iron salts added.
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864  Figure 3. MS analysis of the products of HSAF with FeSOj4(a), Fe(NH4)2(SO4); (b), FeCl; (c)
865 and Fe(NOs)s (d), in absence or presence of the metal chelator EDTA. Standard HSAF gave
866  m/z 513 for [HSAF+H]" and m/z 1025 for [2HSAF+H]"). In the mixtures of HSAF and iron
867 salts, the peak at m/z 1079 was coincident with [2HSAF-H+Fe]", whereas the peak at m/z
868 1591 was coincident with [3HSAF-H+Fe]".
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Figure 4. The in vitro antioxidant activity and the in vivo protective effect of HSAF for L.
enzymogenes grown in the presence of H,O,. a) In vitro deoxy-D-ribose degradation assay for
the antioxidative activity of HSAF. The activity is presented as thiobarbituric acid reactive
species (TBARS) levels relative to the control (100% = TBARS of the control reaction
mixture without HSAF). b) In vitro assay of the Fenton reaction-caused DNA fragment
degradation and the protective effect of HSAF. c-e) In vivo H,O; sensitive assay of the WT
and AHSAF strains cultured in M813m medium containing 0 (c), 80 (d) , or 800 uM (e) H,O,,
and the ODggp value was determined every 24 h. Data are presented as averages of three

independent experiments each conducted in triplicate. *, P <0.05; **, P <0.01.
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Figure 5. The protective effect of HSAF for L. enzymogenes exposed to UV light and ROS
level in L. enzymogenes under oxidative stress. a) The WT and AHSAF strains were exposed
to UV light for 0, 10, 30, and 60 s, and the numbers of colonies on each plate were counted
after 72 h of incubation at 30°C. b) Rescue of the UV-light sensitivity of AHSAF strain by
exogenous HSAF. AHSAF strain was added with a variable amount of HSAF (0, 20, 80, 160
puM) and then exposed to UV light for 60 s. ¢c) ROS level in the WT and AHSAF strains
cultured in different media. No Fe, M813 minimal medium without FeSO4; M813m, M813
modified medium containing 10 uM FeSO,; High Fe, M813 modified medium containing
500 uM FeSO4. d) ROS level in the WT and AHSAF strains treated with 40 mM H»0,. e)
ROS level in the WT and AHSAF strains treated with UV light for 60 s. Methanol was used
as control. Data are presented as averages of three independent experiments each conducted

in triplicate. *, P <0.05; **, P <0.01.
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Figure 6. Molecular structure of HSAF-Fe complexes obtained from the molecular
mechanical force field method and quantum mechanical method. Two molecules (a) or three

molecules (b) of HSAF can chelate one iron ion.

46

NTOONIT-¥YMSYHE3AN 40 AINN ¥ 1202 ‘L€ Udle uo /Biowise wae//:dpy wolj papeojumod



