Evaluating the Thermoelectric Properties of BaTiS₃ by Density Functional Theory

Tula R. Paudel* and Evgeny Y. Tsymbal

INTRODUCTION

The thermoelectric heat–current conversion process is inefficient compared to other energy conversion technologies such as fossil fuel, solar, and nuclear because of the small thermoelectric figure of merit, ZT, of the materials involved. While a large ZT value of ~3 to 4 is required for thermoelectric technology to be viable, even optimized thermoelectric bulk materials, including doped SnTe and PbTe,¹ have ZT values not exceeding about 2.6, which limits the usage of thermoelectricity in practice as a primary energy source. Alternatively, thermoelectric power generation can supplement the other energy technologies by converting wasted heat into current, thereby increasing the overall efficiency of the system. These thermoelectric power-generating devices are very reliable energy producers as they are free of lifetime-reducing moving parts (the typical lifetime of a thermoelectric device is ~10⁶ h) and serve as a component of a global energy solution system.

The thermoelectric figure of merit, \(ZT = (S^2 \sigma / \kappa) T \), is a key measure of a material’s thermoelectric performance at temperature \(T \), where \(S, \sigma, \) and \(\kappa \) represent the thermoelectric power, electrical conductivity, and thermal conductivity, respectively. The latter is given by the sum of electronic thermal conductivity, \(\kappa_e \), and lattice thermal conductivity, \(\kappa_l \). The thermoelectric performance of a material can be enhanced by increasing \(ZT \), which can be achieved by maximizing the power factor, \(PF = S^2 \sigma \), and minimizing \(\kappa_l \). Unfortunately, maximizing PF, for instance, by band engineering, often also increases \(\kappa_l \), even though the contrary has been reported. A significant part of \(\kappa_l \) as it is connected to \(\sigma \) by the Wiedemann–Franz law, \(\kappa_l \sigma = L T \), where \(L \) is a constant equal to \(2.44 \times 10^{-8} \) V² K⁻² for a free-electron gas. Fortunately, \(\kappa_l \) can be minimized somewhat independently without interfering with the process of power factor \(S^2 \sigma \) maximization, thereby optimizing the overall ZT. \(\kappa_l \) can be reduced by using a low-dimensional form of materials, including interfaces, nanostructures, grain boundaries, and amorphous powder, in which the lattice coherency can be tuned, and in the ideal case made smaller than the heat-carrying-phonon mean free path, thereby increasing the phonon scattering.

RESULTS AND DISCUSSION

BaTiS₃ is a unique compound of the II-IV-S₃ material class that crystallizes in the hexagonal \(\text{P}6_3\text{mmc} \) phase (space group 186, Figure 1a), while other members of this class, such as Ba(\(\text{Zr,Hf} \))S₃ and Ba(\(\text{Zr,Hf} \))S₄, crystallize in the orthorhombic \(\text{Pnma} \) phase. BaTiS₃ contains one-dimensional edge-sharing octahedral pillars, running along the [0001] directions, that are connected by the van der Waals interaction along the [100] and [0100] directions. This very anisotropic structure gives rise to giant optical anisotropy, broadband birefringence...
and dichroism, and ultralow thermal conductivity. The electronic band structure and electronic density of states (eDOS) show that the top of the valence band contains two-fold degenerate in-plane sulfur p$_x$ and p$_y$ bands (Figure 1b). The bottom of the conduction band contains nondegenerate titanium d$_z^*$ bands. The spin–orbit coupling does not affect the conduction band, as $l_z = 0$ for the d$_z^*$ band, and is very small for the valence band, as it is primarily composed of low-atomic-number s–p-like states. The Fermi surface of the doped BaTiS$_3$ (±0.05 e/uc) represents a Γ-point-centered Fermi ellipse with the major axis pointing along the out-of-plane direction for an electron-doped sample (Figure 1d) and along the in-plane direction for a hole-doped sample (Figure 1c). Upon increasing the doping level to 0.5 e/uc, while the Fermi surface of the hole-doped sample extends in the plane of the Brillouin zone with multivalley degeneracy at the K and K’ points (Figure 1e), which leads to large DOS and the Fermi surface of the electron-doped sample extends along the Γ–Z direction (Figure 1f), suggesting a low-dimensional nature of the band structure and possibly large σ.

The effective mass of the undoped BaTiS$_3$ (calculated using the band curvature $1/m^* = 1/K^2(\partial^2E/\partial k^2)$) shows that the smallest electron mass is 0.7m_0 along the out-of-plane direction and the smallest hole mass is 0.8m_0 along the in-plane direction, where m_0 is a free-electron mass (Table 1). The small effective mass indicates the possibility of high mobility. Indeed, the mobility calculated using a single-band deformation model shows a very large value of 1240 V cm$^{-1}$ S$^{-1}$, similar to TiS$_2$ for electron conduction and 90 V/(cm S) for hole conduction. Large mobility suggests high electrical conductivity, $\sigma = ne\mu$, and a long carrier lifetime, $\mu = e\tau/m^*$, for electron conduction.

Based on the large eDOS in the hole-doped sample and large μ in the electron-doped sample, PF is expected to be significant for both electron and hole doping. A combination of large PF and low κ_\parallel suggests that BaTiS$_3$ could be an excellent material for thermoelectric applications. To test this expectation, we explicitly compute κ/τ, S, and κ/τ using the linearized electron Boltzmann transport theory based on the first-principles density functional band structure calculations assuming constant relaxation time, and κ using the corresponding phonon counterparts assuming relaxation time based on three-phonon interactions. Figure 2a–c shows total eDOS, doping level, n, and out-of-plane and in-plane components of σ, S, and κ/τ as a function of the chemical potential, $\mu_t = E - E_F$. The chemical potentials we choose lie within the reasonable doping level of ±0.65 e/uc. As expected for a semiconductor, the eDOS, the doping n, and the conductivities, σ and κ, are zero at the Fermi energy; they, however, increase quickly with the increasing μ_t which can be brought about by doping with electrons or holes, as shown in Figure 2a (red curve). The temperature additionally increases

Table 1. Calculated Deformation Potentials (E_i) of Valence and Conduction Bands, Elastic Constants, Effective Mass, and Carrier Relaxation Time

<table>
<thead>
<tr>
<th>Type</th>
<th>E_i (eV)</th>
<th>C_{ip}</th>
<th>C_{op} (Pa)</th>
<th>m^* (m_0)</th>
<th>μ (cm2 V$^{-1}$ S$^{-1}$)</th>
<th>τ (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e (ip)</td>
<td>7.8</td>
<td>942</td>
<td>1.6</td>
<td>29</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>h (ip)</td>
<td>−11.2</td>
<td>942</td>
<td>0.8</td>
<td>80</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>e (op)</td>
<td>−3.9</td>
<td>1266</td>
<td>0.7</td>
<td>1240</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>h (op)</td>
<td>5.6</td>
<td>1266</td>
<td>1.5</td>
<td>90</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Atomic and electronic structures of bulk BaTiS$_3$. Atomic structure (a), electronic band structure (left panel) and atom- and orbital-resolved density of states (right panels) (b). High symmetry points Γ, Z, K, and M are marked in the Brillouin zone shown in (c). Fermi surface of hole-doped BaTiS$_3$ with concentrations of 0.05 e/uc (c) and 0.5 e/uc (e) and that of electron-doped BaTiS$_3$ with concentrations of 0.05 e/uc (d) and 0.5 e/uc (f).

Figure 2. Calculated total electronic density of states eDOS (blue line) and doping concentration n (red line) (a), in-plane, ip (red color), and out-of-plane, op (blue color), components of transport coefficients: electronic conductivities σ (b), Seebeck coefficients, S (c), and electronic part of thermal conductivities, κ_\parallel (d), at room temperature plotted as a function of the chemical potentials, $\mu_t = E - E_F$.

ACS Omega 2020, 5, 12385–12390

https://dx.doi.org/10.1021/acsomega.0c01139
the conductivity, both electronic and thermal (as can be seen by comparing Figure 2 to Figure S2), typical for a semiconductor. While the conductivity of the hole-doped sample remains mostly isotropic, the conductivity of the electron-doped sample is very anisotropic: the out-of-plane conductivity increases dramatically compared to the in-plane conductivity due to contribution from very dispersive out-of-plane Ti-d\textsubscript{xy} bands. Upon increasing the electron doping level beyond 0.65 e/uc, the out-of-plane d\textsubscript{xy} and d\textsubscript{yz} bands contribute first to the conductivity (Figure 1b), and eventually, the in-plane bands, d\textsubscript{x^2−y^2} and d\textsubscript{xy}, start to participate and the conductivity increases up to 2100 m\textOmega−1 cm−1 (1 \textOmega−1 m−1 = 10−3 m\textOmega−1 cm−1, not shown in the plot). The in-plane component, however, remains small (\~{}1−15 m\textOmega−1 cm−1), giving rise to a very large conduction anisotropy, \(\sigma_{\text{max}}/\sigma_{\text{ip}}\), of 225, consistent with the experimental observations.

The Seebeck coefficient, S (also called thermopower), which is proportional to the logarithmic derivative of conductivity with energy, shows a usual sign change at \(\mu = 0\) with a positive value for hole doping and a negative value for electron doping. For the electron doping, the thermopower has a maximum value of \~{}735 \mu\text{V K}^{-1} for the out-of-plane component and \~{}666 \mu\text{V K}^{-1} for the in-plane component. Similarly, for the hole doping, thermopower has a maximum value of \~{}689 \mu\text{V K}^{-1} for the out-of-plane component and 733 \mu\text{V K}^{-1} for the in-plane component at room temperature. These values are much larger than 150−250 \mu\text{V K}^{-1} associated with good bulk thermoelectric materials.14 When the temperature is increased, S decreases; however, it remains relatively high, with maximum values of 390 \mu\text{V K}^{-1} for a hole-doped system and 381 \mu\text{V K}^{-1} for an electron-doped system at 800 K (Figure S2), around which temperature of the compound is reported losing the semiconductor n-type.15 At higher temperature, typically, the most significant peak of S shifts to a higher doping level. However, here it is achieved at a low doping level, \~{}0.01 e/uc, which is much lower than that in its oxide counterpart, electron-doped SrTiO\textsubscript{3}.16

Figure 3a shows the calculated in-plane and out-of-plane \(\kappa_l\) plotted as a function of temperature. It can be seen that \(\kappa_l\) is also anisotropic (Figure 3a), similar to \(\sigma\) (Figure 2). The in-plane component of 2.35 V m−1 K−1 and the in-plane component of 0.25 V m−1 K−1 at 300 K. The value of \(\kappa_l\) is larger, comparable, and smaller than the electronic thermal conductivity, \(\kappa_e\), for intrinsic, low-doped, and heavily doped samples, respectively (Figure 3a to Figure 2d).

The control of \(\kappa_l\) is crucial for the ZT of intrinsic and low-doped semiconductors. Even the largest values of the calculated \(\kappa_l\) for BaTiS\textsubscript{3} are smaller than those reported for the other two-dimensional (2D) materials such as phosphorene, MoS\textsubscript{2} and graphene but comparable to stannate and n-doped STO.17

The efficiency of a thermoelectric generator is related to the power factor, PF = \(S^2\sigma\). Figure 4a shows PF plotted as a function of the chemical potential, \(\mu = E − E_F\).

Figure 3. In-plane, ip (red color), and out-of-plane, op (blue color), components of the lattice thermal conductivity, \(\kappa_l\), as a function of temperature (a) and a phonon band structure and atom-resolved phonon density of states, pDOS (b), as a function of wavenumber.

Figure 4. In-plane, ip (red color), and out-of-plane, op (blue color), components of the calculated power factor, PF (a), and thermoelectric figure of merit, ZT (b), at room temperature as a function of the chemical potential, \(\mu = E − E_F\).
bonding, as evidenced by the large Born effective charges (Table 3) compared to the nominal valence charges, relatively large ionic screening, as follows from the large values of the dielectric permittivity tensor components (Table 4), and weak interatomic force constants. The nondispersive phonons at the Brillouin zone edges (M and K points) dominate pDOS, which allow for the larger number of phonon interactions responsible for the reduced lattice thermal conductivity. The anisotropy of the lattice thermal conductivity can be qualitatively explained in terms of the anisotropic bonding in the compound. While there is a bonding between Ti and S atoms along the out-of-plane directions, leading to relatively dispersive phonon bands there is a bonding between Ti and S atoms along the out-of-plane directions, leading to relatively dispersive phonon bands (not shown) with smaller mass, larger velocity, and larger conductivity, the absence of bonding along the in-plane directions, leading to relatively dispersive phonon bands (not shown) with smaller mass, larger velocity, and larger conductivity.

Table 2. Calculated Born Effective Charge Tensor Components; S_1 Ion is Closer to Ba than S_1

<table>
<thead>
<tr>
<th></th>
<th>xx</th>
<th>yy</th>
<th>zz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>3.4</td>
<td>3.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Ti</td>
<td>2.4</td>
<td>2.4</td>
<td>6.7</td>
</tr>
<tr>
<td>S_1</td>
<td>-1.2</td>
<td>-2.7</td>
<td>-3.2</td>
</tr>
<tr>
<td>S_2</td>
<td>-2.3</td>
<td>-1.6</td>
<td>-3.2</td>
</tr>
</tbody>
</table>

Table 3. Calculated Dielectric Permittivity Tensor Components

<table>
<thead>
<tr>
<th></th>
<th>xx</th>
<th>yy</th>
<th>zz</th>
</tr>
</thead>
<tbody>
<tr>
<td>electronic</td>
<td>10</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>ionic</td>
<td>19</td>
<td>19</td>
<td>92</td>
</tr>
<tr>
<td>total</td>
<td>29</td>
<td>29</td>
<td>105</td>
</tr>
</tbody>
</table>

Table 4. Calculated Phonon Modes (cm$^{-1}$) at the Center of the Brillouin Zone Labeled According to the Symmetry of Irreducible Representations

<table>
<thead>
<tr>
<th></th>
<th>$A_1 (I + R)$</th>
<th>A_2</th>
<th>B_{1g}</th>
<th>$E_g (I + R)$</th>
<th>$E_g (R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0</td>
<td>36</td>
<td>78</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>235</td>
<td>269</td>
<td>149</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>336</td>
<td>280</td>
<td>200</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>437</td>
<td>351</td>
<td>241</td>
<td></td>
<td>260</td>
</tr>
</tbody>
</table>

E_g mode is Raman active, A_1 and E_g are both Raman and infrared active, while A_2 and B_{1g} modes are silent.

The doping level that is required for the maximum value of ZT (0.77) is small and can be easily achieved by doping. For example, S vacancies or doping by La (similar to the case of well-known La$_4$Ba$_{15}$MnO$_{34}$) can make the compound n-type with a good thermoelectric figure of merit. P-doping can be induced by high-temperature growth at a reduced pressure of Ba. The predicted large thermoelectric efficiency of BaTiS$_3$ for both electron- and hole-type conduction is due to the relatively low bandgap and possibly low ionization potentials compared to oxides. Further tuning of the band structure and thermal conductivity is possible by phase intermixing and exfoliations. We find that the alternative centrosymmetric $P6/mmc$ (space group 194) phase is unfavorable just by $\Delta E \sim 1$ meV μm$^{-1}$, indicating a possibility for intermixed phases. The calculated cleavage energy of 1.1 J m$^{-2}$ for exfoliation of the compound along the [0001] direction, which is just about three times the corresponding values for MoS$_2$ and graphene, indicates the possibility of creating low-dimensional ternary chalcogenides.

COMPUTATIONAL METHODS

We used the first-principles density functional theory calculations based on the projected augmented wave method16 and the Perdew–Burke–Ernzerhof functional,19 as implemented in the Vienna ab initio simulation package (VASP).20,21 We fully relaxed the structure, the $P6/mmc$ (space group 186) phase of BaTiS$_3$ (Figure 1a), with the force convergence limit of 0.005 eV/atom. We treated the correlation effects beyond generalized gradient approximation (GGA) at a semiempirical GGA + U level within a rotationally invariant formalism22 with $U = 6$ eV for the Ti 3d orbitals. The crystal structure was optimized, resulting in lattice parameters $a = b = 6.73$ Å and $c = 5.92$ Å, which are very close to the experimental lattice parameters $a = b = 6.75$ Å and $c = 5.8$ Å.8 For the accurate description of the interlayer separation, van der Waal’s interaction was included in the calculations.23

Phonon band structure was calculated using the density functional perturbation theory, as implemented in the PHonon package of Quantum ESPRESSO. We used $6 \times 6 \times 6$ Monkhorst k-grid to calculate the dynamical matrix. The interatomic force constant in real space was then calculated by Fourier transforming the dynamical matrix calculated in a uniform grid. The phonons at any other q-points were then calculated by redoing the Fourier transformation. For the electronic density of states, we used a $12 \times 12 \times 10$ Monkhorst k-point mesh.

The conductivities, σ and k_α, and the Seebeck coefficient, S, were calculated using the BOLTZTRAP code24 which assumes a constant carrier relaxation time, τ, and can directly calculate the power factor $PF = S^2/\sigma$.

We estimated the carrier relaxation time, τ, by single-band approximation using

$$\tau_0(T) = \frac{\mu m^*}{e} = \frac{m^* e^2 h^2}{3 k_B T |m^*|^2 E_i^2}$$

where C_i’s are the elastic modulus, m^* is the effective mass, $m^* = h^2 (d^2E/dk^2)^{-1}$, h is Planck’s constant, k_i is the magnitude of the wave vector in the i-direction, T is the temperature, and E_i is the deformation potential. E_i is proportional to the band edge (conduction band minimum (CBM) and valence band maximum (VBM)) shifts, ΔE, induced by lattice dilation, $\Delta l/l$, along the crystallographic direction, i, as $\Delta E = E_i (\Delta l/l)$. While C_i’s were calculated using
the density functional perturbation theory.25 E_i’s were determined by performing a series of calculations by straining a lattice along the in-plane and out-of-plane crystallographic directions.

The lattice thermal conductivity, κ, was calculated from the solution of the linearized phonon Boltzmann equation,26 assuming its proportionality with the phonon lifetime, which is determined by first-principles anharmonic lattice dynamics13 using the Phonopy code. The force constants used in the code were computed using VASP with a $2 \times 2 \times 2$ supercell and 6 \times 6 \times 6 k-points.

Phonon Symmetry. The phonons at the Γ point can be written as $\Gamma = 4A_\sigma \oplus A_\delta \oplus 4B_\sigma \oplus B_\delta \oplus 10E_\sigma \oplus 10E_\delta$, where numeric symbols correspond to the phonon count. Out of 30 modes corresponding to 10 atoms in a unit cell, three modes are acoustic type and contain a degenerate E_1 (Figure S1c) mode corresponding to the vibration of the lattice along two in-plane lattice vectors’ direction and a nondegenerate A_1 (Figure S1a) corresponding to the vibration of the lattice along the out-of-plane lattice vector direction. The remaining modes are optical. The lowest transverse optical mode has an A_2 direction and a nondegenerate 1 mode, symmetric with respect to C_σ, C_δ, and C_3 rotations, but odd with respect to σ_V (contains the main rotation axis) and σ_d reflections (does not contain rotation, still vertical) and silent with respect to both infrared and Raman spectroscopy. Out of the rest, the A_1 mode, symmetric with respect to all symmetry operations of the group, and the E_1 mode, symmetric with respect to C_σ but antisymmetric with respect to C_δ and C_3 are Raman and infrared active. The E_2 mode (Figure S1d), antisymmetric with respect to C_σ and C_3 but symmetric with respect to C_δ is only Raman active. The B_1 mode (Figure S1e), symmetric with respect to C_σ and σ_V but antisymmetric with respect to C_δ and σ_d and the B_2 mode (Figure S1f), symmetric with respect to C_δ and σ_d but antisymmetric with respect to C_σ and σ_V are both Raman as well as infrared inactive similar to A_2.

ASSOCIATED CONTENT

1. **Supporting Information**

 The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.0c01139.

 Figure S1: Symmetry-resolved phonon modes. Figures S2 and S3: calculated total electronic density of states, doping concentration, in-plane and out-of-plane components of electronic conductivities, Seebeck coefficients, electronic part of thermal conductivities, power factor, and thermoelectric figure of merit at 800 K plotted as a function of the chemical potentials. Figures S4 and S5: the temperature dependence of the density of states, in-plane and out-of-plane components of electrical conductivity, Seebeck Coefficient, electronic part of thermal conductivity, power factor, and thermoelectric figure of merit plotted as a function of the chemical potentials. Table S1: computational cell parameters and atomic positions, a part Quantum Espresso input file (PDF).

AUTHOR INFORMATION

Corresponding Author

Tula R. Paudel — Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States; orcid.org/0000-0002-9952-9435; Email: tula.paudel@gmail.com

Author

Evgeny Y. Tsymbal — Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States; orcid.org/0000-0002-6728-5480

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsomega.0c01139

ACKNOWLEDGMENTS

This work was supported by the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln, NCESR grant number 19-SE-2018. Computations were performed at the University of Nebraska Holland Computing Center. The atomic structure was produced using VESTA software.27

REFERENCES

(10) Sun, B.; Shulumba, N.; Niu, S.; Ravichandran, J.; Minnich, A. In Ultralow Thermal Conductivity of Single Crystalline BaTiS3, APS March Meeting 2018; p S08.015.

