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Abstract 

 

Perturbation of a biological system with small molecules to achieve a desired phenotype or activity 

is commonly referred as chemical genetics.  In pharmaceutical discovery, this approach is most 

often employed in target-based screening but in plants systems the focus is primarily on phenotypic 

selection for commercially relevant phenotype generation such as crop improvement or disease and 

pathogen resistance.  Likewise, algae are considered feedstock organisms for viable and sustainable 

biofuels and other high value products with commercial applications. Algal triacylglycerol synthesis 

is therefore an important target for chemical genetics using high throughput technologies.  In this 

review, efforts are directed towards summarizing our present understanding of the regulation of 

algal triacylglycerol biosynthesis, highlighting critical enzymes in lipid and carbon metabolism that 

may be manipulated to increase lipid metabolism in algae.  These enzymes and pathways are targets 

for chemical genetics with the focus on selection of small molecules as tools to improve 

triacylglycerol storage.  Using case studies, we summarize how chemical genetics is being used in 

plant and microalgal systems to address these critical problems.   

Keywords: Triaclyglycerol, Chemical genetics, Microalgae, Target identification, High throughput 

screening, Biofuels 
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Abbreviations 

TAG Triacylglycerol; HTS  high throughput screening; G3P glycerol-3-phosphate; GPAT acyl-

CoA:glycerol-3-phosphate acyltransferase;  LPA lysophosphatidic acid; LPAAT acyl-

CoA:lysophosphatidic acid acyltransferase; PA phosphatidic acid; PAP Phosphatidic acid 

phosphatase; DAG diacylglycerol; DGAT Diacylglycerol acyltransferase; PDAT Phospholipid: 

diacylglycerol acyltransferase;  ATGL Adipose triglyceride lipase; HSL Hormone-sensitive lipase; 

MGL Monoacylglycerol lipase; KASIII 3-ketoacyl-acyl-carrier protein synthase III; PEPC1 

Phosphoenolpyruvate carboxylase 1; AMP Adenosine monophosphate; IMP Inosine 

monophosphate; WRI1 Wrinkled 1; CETSA Cellular Thermal Shift Assay; DARTS Drug Affinity 

Responsive Target Stability assays; SPROX Stability of Proteins from Rates of Oxidation; iTRAQ 

Isobaric Tags for Relative and Absolute Quantification; TMT Tandem Mass Tag; RNAi RNA 

interference; CRISPR Clustered Regularly Interspaced Short Palindromic Repeats; cAMP Cyclic 

adenosine monophosphate; AMP Adenosine monophosphate; RO5 Lipinski's Rule of 5; IC50/EC50 

Half-maximal Inhibitory/Effective concentration; GC-MS Gas chromatography-mass spectrometry; 

LC-MRM Liquid chromatography-Multiple Reaction Monitoring; LDs Lipid Droplets. 
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1 Introduction 

Chemical genetics can be defined as the use of small molecules to disrupt metabolism resulting in a 

specific phenotype [1-3].  Most organisms employ intricate networks of metabolites that feed into 

larger metabolic networks as required for growth, development and maintenance.  Perturbing the 

function of metabolic networks has increased our understanding of the layers of complexity and 

interactions required by living organisms. The use of small drug-like molecules to alter metabolism 

by interacting with macromolecules including proteins, DNA, carbohydrates and lipids represents a 

promising area of research to further define macromolecular interactions and relationships within 

and between metabolic networks [1, 2, 4, 5].  These small compounds are generally selected by high 

throughput screening for their ability to induce a specific phenotype such as lipid body 

accumulation.  

The use of small molecules to disrupt metabolism has a rich history. The historical records of 

medicinal chemistry include numerous examples where plant compounds were used to treat disease 

and/or infections.  One of the earliest examples of such compounds is acetylsalicylic acid in extracts 

of Willow bark, which was used to alleviate pain as early as 4,000 years ago.  This compound was 

patented for use against pain, fever and inflammation as aspirin in 1899 by Bayer [6].  Quinine, a 

plant product from the bark of Cinchona tree was first isolated circa1820 and used extensively in 

the treatment of malaria and babesiosis [4].  The discovery of penicillin in 1928 is the earliest 

landmark in the era that included designing and repurposing small molecules to alter biological 

processes [5, 7, 8].  Natural and synthetic compound libraries have been routinely screened, for 

example, to identify pharmaceuticals, food preservatives and for manufacturing processes [9, 10].  

The current field of chemical genetics has the potential to target specific pathways and has provided 

powerful tools in addition to classical genetics approaches.  Many small molecules are attractive in 

targeting a specific pathway because they allow temporary perturbation of the system in a 

conditional and dose-dependent manner.  The field of plant chemical genetics has been extensively 

reviewed [2, 5, 11-15] and dovetails well with classical genetic methods to provide insights into the 

characterization of protein function using traditional mating or breeding schemes.  These strategies 

often require selective pressure to identify a phenotype of interest, which may then lead to the 

identification of the responsible gene(s) [16, 17].  Once the target gene is identified, molecular 

genetic engineering methods can be applied to determine the function(s) of a specific gene after 

directed deletion, mutation or altered expression (e.g., RNAi [18]) and assessment of the resultant 

phenotype (see refs. [19, 20]).  

The promise of employing algae for industrial biotechnology applications is rooted in their genetic 

and biochemical diversity, which provides opportunities to discover novel small molecules with 
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industrial and health applications [21].  Most algae are photosynthetic organisms and can fix CO2 

into sugars that enter central metabolism for use as macromolecular building blocks making them, 

in principle, sustainable feedstock for a wide variety of biologicals.  They offer significant 

advantages over yeast and bacterial hosts, which require the addition of organic sources of carbon 

(e.g., glucose, acetate).  It is important to recognize that in establishing long-term sustainability for 

any type of industrial process using algae will require full life-cycle assessments [22]. 

Triacylglycerol (TAG) is an important storage lipid and provides an important role in energy 

homeostasis and carbon storage [23].  Algal lipids are considered a viable, sustainable source of 

biofuels and other hydrocarbons with commercial applications.  However, the application of genetic 

engineering in microalgae to increase accumulation of TAGs coincident with growth has been met 

with limited success [24-27].  TAG biosynthesis in algae, like higher plants, is a complex process. 

The microalgae Chlamydomonas reinhardtii is estimated to have 113 genes involved in lipid 

metabolism based on sequence analysis [28] while the diatom Phaeodactylum tricornutum is 

estimated to have 106 genes [29].  By comparison, the estimate for Arabidopsis is over 600 genes 

and approximately 120 enzymatic reactions that contribute to acyl-lipid metabolism [30]. A 

complication and challenge in fully understanding lipid metabolic pathways in algae is that some 

enzymes are multifunctional and carry out two or more activities. There has been a general 

consensus that algal TAG synthesis occurs primarily in response to stress such as nutrient 

deprivation; the most common of which is nitrogen limitation.  Since N is essential for growth, this 

affects overall productivity and, while there is an increase in the synthesis of TAG, this is 

accompanied by a decrease in biomass that must be overcome to make algal biofuels commercially 

viable [31, 32]. Systems biology studies have begun to unravel the metabolic changes that occur 

during N starvation.  Of note, quantitative proteomic and transcriptomic analyses have shown N 

limitation leads to a reprogramming of metabolism with a shift of carbon flux into storage 

molecules such as starch and TAGs [32, 33].  To obviate the need for stress induction of lipid 

production, current advancements in molecular genetics approaches, systems biology analyses,  and 

the use of drug-like small molecules together offer opportunities to engineer/induce algae to 

produce TAG production with minimal impacts on growth [25, 34-38].  

This review will provide an overview of current chemical genetics approaches that impact TAG 

biosynthesis in algae and will discuss how these efforts differ from genetic engineering methods 

directed to increase TAG biosynthesis.  Importantly, an overview will be provided of high 

throughput screening (HTS) methods, assay development, data analysis practices, and the software 

platforms available for such analyses.  This will be followed by discussions of newly identified 

small molecules that induce enhanced TAG synthesis.  Potential target identification strategies after 

HTS screening will be directed toward key case studies in which chemical genetics was employed 
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in algae and higher plants.  Perspectives will be offered that address future trends, opportunities and 

bottlenecks in applying chemical genetic applications to algae for industrial applications.  

 

1.1 Triacylglycerol biosynthesis in algae 

Triacylglycerol is a neutral lipid consisting of a glycerol backbone esterified to 3 fatty acids and 

primarily functions in energy storage.  TAGs have limited solubility under aqueous conditions, 

which allows for the storage of carbon without affecting overall metabolic flux [39]. Mechanistic 

insight into algal TAG metabolism is based on data from Arabidopsis but differs in that synthesis is 

primarily plastidic [40].  In Chlamydomonas, TAG synthesis is induced under stress conditions 

including nutrient limitation.  When N is limiting, lipid droplets containing TAG are apparent as 

early as 6 hours after N removal and the droplets continue to expand in number and size until 

growth terminates [41, 42]. The inclusion of acetate in the culture media during nutrient deprivation 

further increases TAG accumulation presumably by changing the carbon nitrogen balance [43, 44].  

Photosynthesis is intrinsically linked with TAG biosynthesis; when photosystem II is blocked by 

DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) TAG synthesis is significantly compromised 

[45].  In addition to N limitation, P or S limitation, high light, salt and heat stress also result in TAG 

accumulation [42, 45-50]. Chemicals such as Brefeldin A, fenpropimorph, antioxidant agents, lipase 

inhibitors, lipoxygenase inhibitors, chemicals with benzylpiperazine and adamantine moieties 

significantly induces TAG accumulation [37, 38, 51-54].  Similarly, the MAP kinase inhibitors 

U0126 and IBMX also induce TAG accumulation in algae[55]. Recently metabolomics analysis 

was used to decipher the mechanism of lipid accumulation induced by treatment with the 

antioxidant butylated hydroxyanisole in Crypthecodinium cohnii [56].  

 

In algae, TAG biosynthesis requires the same enzymatic steps as defined in higher plants [57].  The 

presumed complete set of genes in Chlamydomonas required for TAG biosynthesis has been 

annotated [28].  In algae, the Kennedy pathway is the primary metabolic pathway and is referred to 

as acyl-CoA-dependent TAG biosynthesis (Figure 1).  Triacylglycerol is produced through the 

sequential addition of acyl chains to glycerol-3-phosphate (G3P) specific acyltransferases [28, 30].  

The G3P is first acylated at sn-1 position by acyl-CoA:glycerol-3-phosphate acyltransferase 

(GPAT) to produce lysophosphatidic acid (LPA) followed by the second acylation at sn-2 position 

by acyl-CoA: lysophosphatidic acid acyltransferase (LPAAT) resulting in phosphatidic acid (PA).  

Phosphatidic acid phosphatase (PAP) dephosphorylates PA to sn-1,2-diacylglycerol (DAG).  

Diacylglycerol acyltransferase (DGAT) catalyzes the last step of TAG synthesis through the 

addition of a third acyl chain to the sn-3 position of DAG.  An alternative route for TAG synthesis 

is an acyl CoA independent pathway and proceeds through phospholipid: diacylglycerol 
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acyltransferase (PDAT), which directly transfers acyl-CoA from phospholipid to DAG to produce 

TAG and a lysolipid [58-60]. Chlamydomonas has one gene encoding PDAT, which appears to 

have broad specificity for different phospholipids and galactolipids [58].   

 

1.2 Genetic engineering to improve TAG biosynthesis  

Over the past ten years, significant advances have been made in the ability to modify algal genomes 

to increase TAG accumulation through genetic engineering.  These strategies are directed towards 5 

main outcomes: [1] increasing the rate of acyl CoA and fatty acid and synthesis; [2] inhibition of 

lipases and ß-oxidation enzymes to inhibit degredation; [3] overexpression of Kennedy pathway 

enzymes involved in TAG synthesis; [4] manipulation of specific thioesterases and desaturases to 

control fatty acid chain length and saturation; and [5] over- or under-expression  of specific 

transcription factors [25-27, 48, 59, 61-68]. These strategies have been used in different species of 

algae with some degree of success as summarized in Table 1.   

 

The earliest efforts to increase TAG synthesis were directed towards the overexpression of native 

acetyl CoA carboxylase in the diatoms Cyclotella cryptica and Navicula saprophila were largely 

unsuccessful [69, 70].  Reducing the expression of CrPEPC1 using RNAi increased TAG levels by 

20% [63].  Down-regulating both PEPC isoforms (CrPEPC1 and CrPEPC2) resulted in a further 

modest increase in TAG levels that was suggested to occur due to the flux of carbon away from the 

TCA cycle thereby increasing the availability of acetyl-CoA for fatty acid biosynthesis [71].  

Likewise, reduction of citrate synthase (Phytozome ID: Cre03.g149100; CIS2) expression using 

RNAi increased TAG level by 169%.  By contrast, overexpression of the same citrate synthase 

decreased TAG levels nearly two-fold [27].  Efforts directed to manipulate genes in the fatty acid 

and TAG biosynthesis pathways were variable. The overexpression of KAS2 increases the C18 

fatty acids but with no changes in TAG levels [72].  The overexpression of C12 and C14 

thioesterases did not increase TAG levels in the microalgae Phaeodactylum tricornutum [73].  

In contrast to the manipulation of fatty acid biosynthesis enzymes, studies directed to change the 

expression of the TAG biosynthesis enzymes were moderately more successful.  Overexpression of 

the type-2 diacylglycerol acyltransferase (DGAT2) in the marine diatom P. tricornutum resulted in 

a 35% increase in TAGs [62]. Chlamydomonas has 5 DGAT2 genes (CrDGAT2 1-5).  Multiple 

protein sequence alignment showed significant differences but Pfam analysis has demonstrated each 

contains a diacylglycerol acyltransferase domain.  Overexpression of CrDGAT2-1 and CrDGAT2-5 

increases total lipid content 21% and 43% respectively [59].  When all the 5 genes of the Kennedy 

pathway including glycerol-3-phosphate dehydrogenase (G3PDH), GPAT, LPAAT, PAP and 

DGAT from Saccharomyces cerevisiae and Yarrowia lipolytica were cloned into Chlorella 
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minutissima, there was a moderate two-fold increased accumulation of TAG [74].  When GPAT 

from the oleaginous green microalga Lobosphaera incisa (Trebouxiophyceae) was expressed in 

Chlamydomonas there was a 50% increased TAG levels [26].  Moreover, when DGTT1 from 

Chlamydomonas was overexpressed in Scenedesmus obliquus TAG levels increased 35% under N 

starvation [75].  Overexpression of PtDGAT2A in diatom P. tricornutum significantly increased 

TAG levels [62].  

 

Apart from the genes encoding biosynthetic enzymes detailed above, other genes have been targeted 

with the goal of increasing TAG levels.  Overexpression of the lipid body associated protein 

PNPLA3 in P. tricornutum increased TAG levels by 70% [76].  Likewise, overexpression of a 

NAD(H) kinase (a key source of cellular reductant NADH required in variety of abiotic stress 

responses) from Arabidopsis increased lipid content by 110% when expressed in the industrial 

oleaginous microalgae C. pyrenoidosa with no adverse effect on the growth [48].  When expression 

of AMP deaminase is reduced using RNAi, TAG levels increase by 25% [77].  Reduced expression 

of chrysolaminarin synthase in the diatom Thalassiosira pseudonana resulted in a more than 2-fold 

increase in TAG [78].  Likewise reducing the expression of UDP-glucose phosphorylase in P. 

tricornutum also increases TAG accumulation [79].  Triacylglycerol and starch represent the 

primary carbon sinks in algae.  During the first 24 hours of N starvation there is a rapid 

accumulation in starch [42].  Not surprisingly, blocking starch synthesis in the “starchless” mutants 

of Chlamydomonas increase TAG accumulation under N starvation and indeed the starchless strains 

are amongst the highest lipid producing strains identified to date [24]. Essentially all of these 

methods function to shunt carbon from one compound class into storage lipids. 

 

The majority of genes targeted for genetic manipulation were identified using molecular and 

biochemical studies.  More recently, this has been expanded to include systems level studies (e.g., 

genomic, transcriptomic and proteomic analyses) of cells induced to produce lipids in response to 

stress [80].   Of particular interest has been the identification of transcription factors and regulators 

linked to the coordinated metabolic response that results in TAG accumulation [58, 81-83].  These 

transcription factors represent important targets because changes in the activity or abundance of one 

target may result in cascade effects on other metabolic genes in the same regulatory network. 

Studies in higher plants reported over-expression of a DOF-type transcription factor is correlated 

with increased TAG accumulation in seeds [84]. When this was tested in Chlamydomonas there was 

a two-fold increase in total lipids [85]. The overexpression of the AP2 type transcription factor 

Wrinkled1 from Arabidopsis (AtWR1) increased TAG accumulation by 40% in Nannochloropsis 

salina [86].  Similar results were obtained through the overexpression of the bZIP transcription 
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factor in N. salina [68].  More recently, the abundance of a Zn(2)Cys(2) transcription factor was 

reduced in N. salina using a CRISPR-Cas9 genome editing platform that introduced an RNAi 

against the TF, which resulted in a two-fold increase lipid production without adverse effects on 

growth [25].  

2 Applications of chemical genetics to probe biological function  

The genetic studies detailed above, while highly valuable in the identification of targets for 

increased TAG synthesis, have only been marginally successful in unlinking TAG accumulation 

from decreased growth and thus biomass.  To make algae viable as a feedstock for biofuel 

production, it is essential to develop robust strategies to increase TAG accumulation without 

compromising growth and biomass yields.  As an alternative to nutrient starvation the application of 

chemical genetics to identify lipid storage inducers in algae is highly promising.  Among the first 

reported study, Franz and colleagues screened a small compound library to identify chemicals that 

induced TAG accumulation in 4 different marine algae (Nannochloropsis salina, N. oculata, 

Nannochloropsis sp. and Phaeodactylum tricornutum) without nutrient deprivation or 

compromising growth [37].  Among the hits were the fungicide fenpropimorph , U0126 (a MAP 

kinase inhibitor), IBMX (a modulator of cAMP signaling), and Brefeldin A, which rapidly induces 

TAG accumulation in C. reinhardtii CC125 [51] [52, 53, 55] [54].  

Our recent work has taken advantage of a high throughput screening system developed to select 

small molecule chemical inducers of lipid storage in C reinhardtii [38].  From over 43,000 

compounds screened, 243 compounds were identified that clustered into 5 distinct structural 

scaffolds.  These compounds were effective at low dosage, stimulated lipid production during 

growth and were effective in multiple algal species including Chlamydomonas, Chlorella 

sorokiniana UTEX 1230, C. vulgaris UTEX 395, Tetrachlorella alterens UTEX 2453 [38].  This 

demonstrates the potential and strength of high throughput screening approaches in algae. 

 

2.1 Rationale for applying chemical genetics  

There are a number of parallels between chemical genetics in traditional genetic studies.  A 

chemical that inhibits protein function or expression is similar to a loss-of-function phenotype 

developed using molecular genetic tools.  Likewise, chemicals that are agonists of protein function 

are similar to gain-of-function and over-expression approaches.  Apart from the loss -/gain-of-

function, chemical genetic approaches have additional key advantages over traditional genetic 

methods.  For example, a chemical can interfere with more than one isoform of a protein as opposed 

to targeting a single protein using traditional genetics.  If reversible, these small molecule chemicals 

can be added and removed providing temporal control to perturb protein function, a feature that 

circumvents lethality due to mutation.  Also, by applying chemical genetic methods, small 
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molecules can be added in dose-dependent manner, which allows fine-tuning to modify a 

phenotype, which is more difficult to achieve through traditional genetic methods.  Importantly, 

genetic engineering requires prior knowledge of the function of a given gene and this is not 

essential when applying chemical genetic methods.   

 

Chemical genetics can be applied in both forward and reverse directions.  As illustrated in Figure 2, 

forward chemical screening is useful for identifying small molecules that induce a phenotype of 

interest without knowledge of the target while in reverse chemical screening a single protein is 

targeted with a chemical activator or inhibitor.  Regardless of the approach, the small molecules 

used in chemical genetics have the capacity to induce a biological effect conditionally and in dose-

dependent manner, avoiding variable and possibly unrelated impacts that may occur using a more 

standard genetics approach. Further, the small molecules can be introduced in a conditional manner, 

may be added at any time and at variable concentrations over the course of an experiment.  

Moreover, depending on their size and physiochemical properties, these small molecules may 

penetrate the cell to reach their target or may interact with cell surface receptors, much like drugs 

and some hormones.  Many genetic approaches do not lead to the expected phenotype due to 

compensatory mechanisms, such as multiple isoforms of the same protein, whereas small molecule 

treatments may obviate this by interacting with a site common to all or most isoforms.  These small 

molecule effectors are tunable by varying their concentrations. In the case of algae, another 

potential obstacle using these approaches is the barrier imposed by the pectin-cellulosic cell but this 

is virtually ignored in most phenotypic screening plans when considering the chemical library. To 

date, the application of chemical genetic methods is more common in animal models and cell-based 

systems, with only a few conducted in higher plants or algae.  There are several reviews addressing 

chemical genetics in plants [4, 5, 14, 87-91] and algae [37, 38, 51, 54, 92] that the reader may refer 

to for additional information.  

 

2.2 Selection of small molecule libraries and concentrations for screening  

Chemical genetic approaches rely on carefully designed chemical libraries of thousands of 

structurally diverse compounds and unique targeted assay systems [89].  Most commercial libraries 

are designed to obey Lipinski’s rules for solubility and permeability in mammalian cells as desired 

for drugs [1, 93]. The Lipinski Rule of 5 (RO5) describes the physicochemical properties of 

molecules for orally administrated drugs that would likely be absorbed into cells [94, 95].  The most 

common physiochemical properties include molecular mass < 500 daltons; log P (octane-water 

partition coefficient) < 5; number of H bond donors < 5; H bond acceptors < 10.  The RO5 does not 

predict whether or not the compound would be active against a specific target, but violation of any 
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of these parameters makes the molecule less suitable as a drug. There are exceptions to RO5 such as 

herbicides, insecticides and natural products [96]. In the case of agricultural applications, spraying 

is the preferred method of delivery.  The barrier for uptake in plants is different than that for more 

traditional pharmaceutical applications, which includes the leaf cuticle, root or shoot uptake or 

uptake via xylem and phloem and in case of algae, presence of thick pectin-cellulose cell wall and 

polysaccharide sheath.  Moreover, the dosage frequency can be less as compared to animal models.  

Thus, Lipinski’s RO5 may not be as useful in the case of plants or algae. 

Several commercial libraries are available that generally follow RO5 [97]. The chemical libraries 

usually differ in composition, which will affect the outcome of the screening experiment as 

discussed in detail elsewhere [97].  The bioactive collections contain compounds with well-defined 

biological activities.  These libraries are generally smaller in size than undefined collections.  A 

selected list of chemical screening library collection is provided as Table 2.  

 

The selection of the concentration of compounds to be used in a given screening method is 

somewhat empirical.  Generally, chemical libraries are provided either dried or as a 10 mM starting 

stock in DMSO.  As a general rule, initial screening is performed at a fixed concentration ranging 

from about 1-10 µM.  This also depends on whether the route of screening applies the forward or 

reverse approach (e.g. in vivo cell-based assays versus a specific purified enzymatic target).  In 

target-based reverse screening carried out in vitro, the compounds generally have higher apparent 

activity compared with cell-based assays since they have direct access to the binding pocket of the 

target without any cell membrane and/or cell wall restrictions, and thus lower screening 

concentrations are preferable (generally in the nanomolar range).  In a typical forward in vivo 

phenotypic screen of an organism or cell line, the small molecules have to cross the cell barrier 

and/or intracellular membranes and the target is assumed to be in very low concentration, hence, 

requiring higher effective concentrations.  A recent review reported chemical screening in plant 

systems may employ concentrations as high as 20-50 µM [98].   

3 Development of high throughput screening (HTS) platforms 

Assay development is an important step in high throughput screening.  The high throughput 

screening assay must be reliable, robust and reproducible.  It is also important to consider whether 

or not the phenotype to be scored is suitable using a microplate format.  The basic assay read-out 

often consists of a quantitative measurement using absorbance/fluorescence or luminescence 

reporters.  The nature of the response should be clearly defined in terms of the phenotype of interest 

such as increased or decreased signal.  HTS assays fall broadly into three general categories: [1] 

purified protein/enzyme assays; [2] cell-free lysate assays; and [2] cell- or organism-based 

phenotypic assays.  Purified enzymes/protein assays are typical examples of reverse screening 
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approaches while cell extracts and phenotypic assays using whole cells are examples of forward 

chemical screening.  In the case of phenotypic screening, optimization of cell density is critical.  

Higher cell densities require higher initial concentrations of the library compounds; conversely, if 

the cell density is too low, then the concentration of the compound has the risk of being toxic to the 

cells.  Hence, assay optimization is a critical step before the actual screening.  Another 

consideration in assay development is to test that the phenotype is not influenced by the vehicle 

solvent (e.g. DMSO or ethanol).  A good initial estimate is that the solvent vehicle should not 

exceed 1% of the total volume of the cell suspension per well.  The assay should be clearly defined 

to include positive and negative controls to assist in measuring the assays dynamic range. Positive 

controls are conditions that would produce a similar phenotype as that desired of an active 

compound. Negative controls are generally cells that are treated with "empty vehicle" (for example, 

DMSO) demonstrated to have no activity in the assay. For example, N starved algal cells produce a 

hyper-lipid accumulating phenotype and this phenotype can be detected by adding the lipophilic 

dye Nile red or a fluorescent dye BODIPY.  Hence, the increased fluorescence Nile Red or 

BODIPY signal from cells starved for nitrogen would provide a reasonable positive control for lipid 

accumulation.  The negative control is usually cells treated with the vehicle alone.  Additional 

examples of assay development in algae have been described previously [37, 54, 92].  

 

3.1 Statistical data analysis of the high-throughput screening 

High-throughput screening is a complex large-scale process where thousands of compounds are 

screened in order to identify potential drug-like molecules.  During a primary screen, it is a general 

practice to perform one replicate due to reagent and cost considerations.  Therefore, care must be 

taken to ensure the assay is specific, robust, and offers a relatively wide dynamic range of 

sensitivity between positive and negative controls [98].  Depending upon the number of compounds 

to be screened and the availability of the biological materials, microtiter plates with 96-, 384- or 

1536- wells are employed.  In plant HTS efforts, such as growing single seedlings, large well 

microplates (24 or 48-well plates) are suitable but this may limit the size of the screening library to 

between 500-10,000 compounds while in algal screens low volume 96-384-well microplates is the 

preferred choice.  Once the format is established, the quality control (QC) parameters must be 

established.  Reference controls are placed within each plate to determine plate-to-plate variation 

and to estimate effectiveness of the screen.  For commercial libraries, the compound collections are 

usually organized so that the first and last columns on the microtiter plates are empty and reserved 

for the controls. Adding both positive and negative controls on the same plate helps to identify the 

hits with a higher degree of confidence (Figure 3).  Moreover, in reporter-based or dye-based 

screening assays, the interaction of the chemical compound with the dye/reporter may result in false 
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positive or false negative results for some compounds.  For example, typically as many as 2-3% of 

the chemical library interferes with the luminescent luciferase activity assessment [99].  Therefore, 

it is important to verify activity by testing the compound alone using the same wavelength to 

establish that the compounds do not contribute fluorescence or absorbance.  Several pre-processing 

and statistical methods are available to identify the range of compound potencies and efficacies 

from the HTS screen, quality control and robust identification of the “hit” molecules (detailed in 

Box 1).   

 

3.2 Software platforms for HTS and chemoinformatics analysis 

HTS data analysis is complex and can be time-intensive.  The number of data points generated in 

these experiments is high and these must be processed efficiently to identify biologically relevant 

signals. The HTS data may suffer from signal variation caused by batch, plate, and/or instrumental 

handling [100].  The identification of putative “hits”, i.e., compounds imparting the desired 

phenotype, is highly dependent on choosing the correct data processing routine.  Several tools are 

available that offer straightforward analysis and correct for plate-to-plate variation and systematic 

errors.  A short compilation of commercial as well as open source software tools is listed in Table 3.  

 

3.3 Verification of hits from the primary screen and establishment of efficacy 

Once primary hits are identified, the next critical step is to rigorously verify the compound’s 

efficacy.  To do this, the screening assay is repeated on the potential hits identified from the primary 

screen to establish robust and reliable dose-response activities.  An important parameter to evaluate 

the chemical’s efficacy is to establish the half-maximum inhibitory/effective concentration 

(IC50/EC50).  To establish the accurate IC50/ EC50 concentration for a given compound, it is essential 

to include a range of compound concentrations to determine both the minimum and maximum 

effective dosages.  Establishment of IC50/ EC50 will help to avoid deleterious effects of high 

concentrations and to minimize false positives and negatives.  The next step for validation is to 

perform orthogonal independent assays to confirm the biological activity of the selected “hits”.  The 

orthogonal assay might include, as examples, a different reporter, determination of endogenous 

gene expression or other methods that verify the biological effect addressed in primary screen.  This 

is also essential to uncover off-target effects. For example, in our previous work, a large library was 

screened for chemical inducers of lipid accumulation initially using Nile Red lipophilic dye to select 

active compounds. Of 367 compounds identified as hits in the primary screening, only 243 were 

confirmed by rescreening and dose-response analysis [38].  To verify the TAG inducing phenotype 

for a subset of lead hits, cells were treated with compound under the conditions of the primary 

screening and then lipid accumulation was verified by total fatty acid identification and 

quantification using GC-MS, targeted quantification of complex lipids using LC-MRM, and 
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confocal microscopy to visualize lipid droplets.  These secondary screens unequivocally established 

the desired biological activity of the final set of selected lead compounds.  

  Defining both the selectivity and specificity of a given compound for the target is essential.  

Ideally each active compound should have only one target (e.g., enzyme activity) thereby 

minimizing off target and side effects [14, 98, 101].  Compounds that are destined for use as drugs 

or in food sources must pass food and drug administration tests for safety and efficacy 

(https://www.fda.gov/default.htm).  Likewise, for compounds that may be deployed in the 

environment or deposited in environmental waste, Environmental Protection Agency guidelines 

must be followed (https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances).  Strategies 

to increase algal oil production for biofuels fall under the latter guidelines.  To establish the 

selectivity of a compound, its impact on various biological processes needs to be evaluated.  

Common among these is toxicity and metabolism of the primary compounds as well as metabolites 

and degradation products.  For example, Wase et al. tested selected activators of TAG synthesis in 

algae for various biochemical readouts including changes in growth, biomass yield, starch 

production, fatty acid levels, effects on photosynthetic pigments and efficacy in multiple algal 

species [38].  Basic physiological processes such as photosynthetic and respiration rates as well as 

markers of stress, such as levels of reactive oxygen species and glutathione levels, were also 

evaluated for cells treated with lipid storage inducing compounds (unpublished data).  

4 Small molecules to target lipid metabolism leading to enhanced TAG synthesis 

Lipids are the primary components of membranes that are essential to cellular organization, 

function as storage compounds for energy, and may have bioactive roles that contribute to cellular 

regulation. Lipid metabolic pathways are dynamic and include fatty acid synthesis and degradation, 

complex lipid synthesis of membrane and neutral lipids including TAGs, and the synthesis of 

bioactive lipids, many of which are involved in cell signaling.  The application of chemical biology 

is ideal to target lipid metabolism with the goal of increasing TAG accumulation.  This requires a 

full understanding of the lipid metabolic networks and enzymes and how they can be manipulated 

such that lipid metabolic flux result in increased TAG synthesis (see Section 1.1 above).  The 

identification of small molecules from the HTS strategies detailed above would be expected to 

modulate the function of key enzymes and regulatory molecules and processes to provide important 

tools to decipher biological function.   Additionally, the compounds provide tools to understand 

how modulation of metabolic pathways and enzymes may lead to the desired phenotype, in this case 

the accumulation of TAG.  As detailed below, a number of small molecules have been identified 

and effectively used to target increased TAG synthesis circumventing the need for genetic 

engineering methods.   
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4.1 Chemical inhibition of lipases 

Lipases catalyze the hydrolysis of fatty acids from complex lipids. In algae, lipase inhibition has 

been suggested as one target to increase TAG accumulation. There are structural similarities 

between pancreatic lipase, lipoprotein lipase (LPL), hepatic lipase (LIPC) and endothelial lipase 

(LIPG) that have been exploited to develop inhibitors of this class of enzymes.  The LPL and LIPC 

both prefer TAGs as substrates, while LIPG prefers phospholipids [102].   Sulfonylfuran urea 2 is a 

potent inhibitor of LPL (IC50 = 0.1µM) and causes marked elevation of plasma TG levels [103]. 

Although undesirable in humans, the activity of this compound could be beneficial for algal biofuel 

research to inhibit related algal lipases.  Several compounds showed excellent inhibitory activity 

towards LIPG and LIPC such as benzothiazoles showing an IC50 < 20 nM [104].  Specific lipases 

catalyze the degradation of lipid droplets (LDs) such as adipose triglyceride lipase (ATGL), 

hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL).  The ATGL catalyzes the 

initial step in TAG degradation and produces DAGs. Atglistatin is a competitive inhibitor of ATGL 

and can be effectively used for discouraging the degradation of LDs in algae [105]. HSL is a 

multifunctional enzyme with 10-fold activity with DAGs as substrates, compared with TAGs.  

Several pharmaceutical companies have developed HSL inhibitors based on carbomoyltriazole and 

carbamate [106, 107]. Several of these lipase inhibitors have been used to increase TAG 

accumulation in Nannochloropsis sp.  Of note, it was reported that the pancreatic lipase inhibitor 

Orlistat (40 nM f.c.) increased Nile red fluorescence by 72% suggesting significant TAG 

accumulation [37].  Monoacylglycerol lipase (MGL) is an enzyme responsible for the last catabolic 

process in TAG degradation and generates glycerol as a by-product.  A piperidine carbamate 

compound JZL184 is a highly selective inhibitor of MGL.   In a recent study by Franz et. al., 

JZL184 when used at nM concentrations increased the apparent accumulation of neutral lipids in 4 

marine algae species [37].  This study is discussed in detail as a case study (see below, section 6.4).  

 

4.2 Chemicals that modulate the activity of acyltransferases  

Acyltransferases catalyze acyl-CoA dependent ester bond formation between a fatty acid and an 

acceptor molecule such as glycerol.  These enzymes play key role in the synthesis and remodelling 

of complex lipids including phospholipids and TAGs [108]. Glycerol-3-phosphate acyltransferase 

(GPAT) catalyzes the first step of glycerolipid biosynthesis.  At least two GPATs are predicted in 

C. reinhardtii, which are suggested targets for inhibition to lead to lipid accumulation.  Support for 

this approach is evidenced by the observation that the expression of GPAT (Cre02.g143000.t1.2; 

PLSB1) is decreased significantly after nitrogen starvation for 4 hours commensurate with an 

increase in TAG synthesis and accumulation [58, 81]. FSG67 is an inhibitor of GPAT that inhibits 

all GPAT isozymes in mice [109].  The 1-acyl-sn-glycerol-3-phosphate (AGPAT) catalyzes 

acylation of lysophospholipids with acyl-CoA and produce phosphatidate.  There are at least 5 
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predicted AGPATs present in C. reinhardtii.  A non-competitive inhibitor of AGPAT, CT32228, 

has been described recently [110] and could potentially be used for defining the role of AGPATs in 

TAG biosynthesis in algae although this is not desirable for biofuel production purpose.  The 

diacylglycerol acyltransferases (DGATs) catalyze the biosynthesis of TAGs by acylation of DAGs 

via the acyl-CoA-dependent pathway.  Several inhibitors of DGATs are marketed by 

pharmaceutical companies [111] such as PF-04620110 (Pfizer), AZD7687 (Astra-Zeneca) (in Phase 

I trials), Pradigastat (Novartis) [112] and JNJ-DGAT2A and JNJ-DGAT2B (Johnson & Johnson).  

While, it is not desirable to inhibit AGPATs and DGATs for biofuel production, these inhibitors 

may be useful to define the roles of these enzymes in various metabolic routes leading to TAG 

biosynthesis.  No activators of acyltransferases or other TAG biosynthetic enzymes have been 

described.   It is possible that such compounds may be identified through screening for TAG 

accumulation in algae. 

 

4.3 Other targets for improving oil production 

Understanding microalgal lipid metabolism is critical for the improvement in the production of 

biodiesel.  In recent years, many genes involved in lipid metabolism have been targeted for deletion 

or overexpression in an effort to improve lipid accumulation in higher plants such as Arabidopsis, 

rapeseed (Brassica napus), and soybean (Glycin max) to increase production of TAGs in seeds [73].  

It has been proposed that increased fatty acid supply would increase oil synthesis and yield but 

these approaches have resulted in limited success [57].  Overexpression of acetyl-CoA carboxylase 

(ACCase) in seeds of B. napus yielded no significant change in seed lipid content but the same 

approach yielded a 5-fold increase in potato (Solanum tuberosum) [113].  Overexpression of 3-

ketoacyl-acyl-carrier protein synthase III (KASIII) did not increase lipids in A. thaliana and B. 

napus [65], whereas overexpression of glycerol-3-phosphate dehydrogenase (G3PDH) resulted in a 

40% increased lipid in the seeds of B. napus [114].  G3PDH catalyzes the synthesis of glycerol-3-

phosphate which is a precursor for TAG biosynthesis.  The compound MEDICA 16 (sc-203131; 

Santa Cruz Biotechnology) is an inducer of malic enzyme and mitochondrial G3PDH.  It causes 

hypolipidemia in animal models, disfavoring fatty acid synthesis and favouring fatty acid oxidation 

[115].  Again, this compound may be of value in studying lipid metabolism in plants and algae but 

not in the production of lipids for commercial purposes.  Recently,  knockdown of 

phosphoenolpyruvate carboxylase 1 (PEPC1) an enzyme of the glycolytic pathway was shown to 

increase TAG levels 28-46% [71].  PEPC has an important role in carbon fixation and regulation of 

flux through TCA cycle.  Previous studies showed that there is negative correlation between PEPC 

and lipid accumulation[64].  Using virtual chemical screening of 12, 918 publicly available 

compounds, potential small molecules inhibitor of PEPC were identified.  To test the compounds, 
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recombinant PEPC from a angiospermic plant Flaveria (family: Asteraceae) was heterologously 

expressed in E. coli (BL21) and PEPC activity was monitored.  Two compounds (+)-catechin and a 

quinoxaline compound AG 1433 inhibited activity and were shown to bind to an allosteric feedback 

inhibitor site [116].   

Deletion of GUT2 encoding G3PDH in the yeast Yarrowia lipolytica resulted in a 3-fold increase in 

TAG.  In this case, it was suggested that lipids were mobilized at the exponential phase of growth 

due to an increase in ß-oxidation of fatty acids.  Y. lipolytica contains 6 acyl-CoA oxidases (AOX) 

catalyzing the rate-limiting step of peroxisomal beta-oxidation. Deletion of all 6 AOX genes in a 

Δgut2 mutant increased lipid 4-fold.  Thus, inhibition of G3PDH along with AOX might be 

considered as another strategy for improving TAG accumulation.  Recently a small-molecule 

screening study identified inhibitors of G3PDH [117].  The structure-activity analysis identified a 

core scaffold structure of benzimidazole-phenyl-succinamide essential for the inhibition of G3PDH.  

Modulation of the benzimidazole ring system improved the potency and reduced off-targets.  Two 

compounds, iGP-1 and iGP-5, were identified as potent inhibitors of G3PDH and may have 

properties useful to increase algal lipid yield [118].  Treatment with trimetazidine, a 3-ketoacyl-

CoA thiolase inhibitor, leads to a shift in metabolism of obese mice accompanied by accumulation 

of long-chain acyl-CoA and increases in TAG content [119].   Amiodarone inhibits mitochondrial 

beta-oxidation of fatty acids and twenty-four-hour dosage of this compound was shown to increase 

hepatic triglycerides by 150% in mice [120].  Therefore, use of either compound may inhibit fatty 

acid ß-oxidation to increase TAG accumulation.      

Another possible route for increasing lipid production is to block energy-rich starch production. 

Previous work showed that disruption of ADP-glucose phosphorylase or isoamylase produced 

higher levels of TAGs during N starvation in Chlamydomonas [121].  Other commercially available 

compounds that inhibit starch accumulation and which might induce lipid accumulation include a 

urea-derived compound that targets glycogen phosphorylase (catalogue # sc-203975; Santa-cruz 

Biotechnology) [122] and deoxynojirimycin (catalogue # sc-201369; Santa-cruz Biotechnology), an 

inhibitor of beta-glucosidase and glucoamylase [123] c.  

 

4.4 Targets for channelling acetyl-CoA to FA biosynthesis 

All microorganisms are capable of synthesizing lipids but only the oleaginous species accumulate 

significant quantities (> 30% on dry cell basis).  This has been suggested to be due to the production 

of high levels of acetyl-CoA, the basic building block of fatty acids [124, 125].  Pyruvate is the 

product of glycolysis and acetyl-CoA is produced from pyruvate by the activity of pyruvate 

dehydrogenase.  The acetyl-CoA thus formed enters the TCA cycle to yield citrate.  When in high 

levels, citrate is transported into the cytoplasm where it is reconverted to acetyl-CoA by the activity 
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of isocitrate lyase thus providing substrates for de novo lipid biosynthesis [125-127].  High levels of 

ATP and citrate generally favor fatty acid and lipid synthesis for storage purposes.  However, in N 

deprivation in algae, lipid accumulation is associated with low energy levels and low AMP levels.  

This is suggested to occur by an increase in the expression and activity of AMP-deaminase  to 

produce IMP (inosine monophosphate) and ammonia [77].  It was suggested that the excessive and 

abrupt decrease in AMP levels alters activity of the TCA cycle and NAD+/NADP+ isocitrate 

dehydrogenase (IDH) activity resulting in citrate accumulation in mitochondria [128].  When the 

citrate levels rise, excess citrate is transported to the cytosol by citrate:malate transporter [128] and 

is then cleaved to acetyl-CoA and oxaloacetic acid by the action of ATP-citrate lyase [129].  This 

suggests that inhibition of the activity of AMP-deaminase could be an important signal to switch the 

organism’s metabolism to increase lipid biosynthesis.  A recent report suggested that metformin, a 

widely prescribed medicine for type-II diabetes, activates the regulatory AMP kinase, at least in 

part, through inhibition of AMP deaminase [130].  Park et al. showed using time course transcript 

profiling in Chlamydomonas that during N starvation that RNA expression levels of AMP 

deaminase increase successively as N starvation progresses concomitant with a decrease in 

adenosine-5-monophosphate levels [41].  This observation points to the importance of AMP levels 

in regulating metabolism during N starvation. It is possible a similar alteration in AMP levels 

occurs during treatment with the lipid inducing compounds our laboratory has identified by high 

throughput screening. In this case, the levels of adenosine and guanosine in Chlamydomonas cells 

were significantly lower than non-treated controls.  Reduction in the levels of adenosine and 

guanosine parallels the exhaustion of AMP in the cytosol.  While AMP was not measured in those 

studies, it was noted that the levels of 2-Deoxyinosine 5-monophosphate were elevated after 

treatment with any of the 5 lipid inducing compounds [38].  Thus, reduction of AMP may be a 

common link for induction of lipid production.  Treatment with the novel compounds also increased 

accumulation of isocitric acid, suggesting an important role for NAD+/NADP+ isocitrate 

dehydrogenase during the lipid inducing phase.  Hence targeting the isocitrate dehydrogenase may 

also be an excellent strategy for induction of lipid production in algae.  Several inhibitors of IDH 

such as Vorasidenib, IDH-305, Ivosidenib and GSK864 are available from commercial suppliers.   

 

4.5 Small molecules for targeting transcription factors 

One approach to influence metabolism globally is to regulate the activities of transcription factors 

(TFs) that control expression of genes in targeted pathways. However, while algal genome sequence 

analysis has led to the identification of putative transcription factors and other regulatory proteins, 

few studies have provided sufficient detail to understand regulatory networks. There have been TRs 

identified whose expression correlate with lipid accumulation that should be examined to determine 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

if there is a regulatory relationship (Table 1). Of interest, is the case of wrinkled 1 (WRI1) whereby 

overexpression resulted in 36-44% increase in TAG levels [86].  Similar results were obtained when 

a DOF-type transcription factor and selected bZIP transcription factors were overexpressed [68, 85]. 

Both DOF-type and bZIP transcription factors were known as stress regulators associated with lipid 

metabolism [68, 85].  Knock down of a Zn2Cys2 transcription factor using CRISPR-Cas9/RNAi 

system in Nannochloropsis gaditana yielded 2-fold enhancement of lipid accumulation in non-

nitrogen starved cells [25].  These results provide some support for the notion that small compound 

activators or inhibitors of TFs may be selected and employed to increase lipid accumulation and 

storage.  No chemicals thus far have been identified that function as TF acitvators, however a few 

chemicals have been identified as inhibitors but whether they would work in algae is a matter of 

investigation (https://www.scbt.com/scbt/browse/Transcription-Factor-Inhibitors/_/N-jjd14j).  

Recently, the expression of a bZIP TF was shown to be positively correlated with increased DGTT1 

expression and increased TAG levels [83].   However, unpublished data from our laboratory 

indicated several transcription factors of bZIP family are significantly down-regulated when 

Chlamydomonas cells were treated with lipid inducing compounds (Compound WD30030 and 

WD10784; Wase et al unpublished).  Activator protein 1 (AP-1; UniProt ID: P0512) has high 

sequence similarity with the bZIP family of transcription factors of Chlamydomonas (Score 111; E-

value 2e-07).  Compound SP 100030 (PubChem ID: 9910975) is a potent inhibitor of AP-1 

transcriptional activity (IC50 = 50 nM) [131] and has been effectively used to reduce bZIP mediated 

transcriptional activity.  In a recent transcriptome profiling of 3 Nannochloropsis species, the 

expression of several TFs including bZIP, NF-YC, C3H, AP2 and MYB were found to be highly 

correlated with lipid biosynthesis pathway enzymes, suggesting possible interrelated regulatory 

circuits.  Two inhibitors of Myb were recently identified using a fluorescence-based chemical 

screening approach of natural sesquiterpene lactones (STLs) from a focused panel of 30 different 

STLs[132].   Among these, Mexicanin-I, an STL isolated from Helenium mexicanum was found to 

be a potent inhibitor of Myb-activity that functions in a dose-dependent manner [132-134].  

Whether or not these inhibitors would work in algae to induce TAG accumulation is a matter for 

future investigation, nonetheless, this approach represents an attractive target to increase TAG 

production.  These and additional metabolic targets, as well as small compound modulators of their 

activities, are presented in Figure 4     

5 Target identification strategies 

Once a small molecule is identified via phenotypic screening and the activity is confirmed, the next 

step required is the identification of the molecular target.  This is necessary to fully unravel the 

effects of the compound on metabolism and to understand the mechanism of action.  However, 

target identification can be hampered by the following limitations: 1) weak interaction between the 
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compound and the protein target caused by low-affinity binding; 2) low abundance of the potential 

target; 3) high abundance of non-specific binding proteins as may occur in cell plasma or sap [135]  

such as phycobilisomes anchored to thylakoid membranes as in the case of cyanobacteria Nostoc 

punctiforme [136]; and  4) lack of a suitable functional group to attach a tag on the small molecule 

that would prevent chemical modification for use as an affinity ligand.  Few methods are available 

to reduce high abundance interfering proteins.  Some commercially available kits include 

ProteoPrep 20 plasma immunodepletion kit (Sigma-Aldrich); affinity columns such as Multiple 

Affinity Removal System (MARS) from Agilent; or the liquid gel-free Free Flow Electrophoresis 

technique used previously for separation of high abundance phycobiliproteins [136]. 

The most common and direct method for target identification is to label the small molecule of 

interest, allow binding, followed by in vitro biochemical purification [137, 138]. Although this 

method is accurate, it is quite cumbersome and has limitations such as non-covalent binding 

between the ligand and the target, which may result in dissociation in the process of purification. 

Other approaches such as photoaffinity cross-linking, Surface-plasma resonance assay (SPR) or 

radiolabeling require knowledge of structure-activity relationship (SAR) and presence of suitable 

functional group as affinity chemistry is limited.  To overcome these problems, alternative 

techniques have been described such as the Cellular Thermal Shift Assay (CETSA), Drug Affinity 

Responsive Target Stability Assays (DARTS), Limited Proteolysis coupled Selected reaction 

Monitoring (LiP-SRM) and Stability of Proteins from Rates of Oxidation(SPROX) [139-141].  These 

techniques are label-free and no chemical modification is required for designing functional chemical 

probes.  An example of a successful target identification was carried out using DARTS while 

studying the effect of grape seed extract (GSE) in human colorectal cancer (CRC) cell lines. In this 

case, GSE causes ER stress and was shown to inhibit the PI3k-Akt-mTOR pathway specifically 

[142].  

  

5.1 Target identification by the Cellular Thermal Shift Assay (CETSA) 

The Thermal Shift Assay (TSA) has been used historically in drug discovery for target 

identification but this application is limited to purified native or recombinant proteins [143]. 

Recently, a modified method called the cellular thermal shift assay was described to assess small-

molecule target engagement within the cell.  This method takes advantage of drug-induced 

stabilization of the target protein under various experimental conditions [139].  Briefly, in a CETSA 

workflow, live cells, cell lysates or tissue samples are treated with either a vehicle control (e.g. 

DMSO) or the small molecule (Figure 5).  The samples are then distributed in small aliquots and 

heated in a multi-temperature thermal cycler at different temperatures ranging from 37 ℃ to 60-65 

℃.  If the compound-target complex is formed, the Tm of the drug-bound complex is generally 
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higher than that of the native protein from the vehicle-treated lysate sample.  With increasing 

temperature, proteins start to unfold and aggregate at the bottom of the tube.  The remaining soluble 

cellular proteins are separated from the aggregated proteins by centrifugation.  Subsequently, the 

proteins that are complexed with the compound can be identified using MS-based approaches. 

Using this method, once the potential temperature at which the target-engagement is identified, then 

target-engagement potency can be measured using Isothermal-Dose Response Fingerprinting 

(ITDRFCETSA). For ITDRF, the target engagement temperature is kept constant and the drug is 

added at varying concentrations to observe a thermal dose-response profile. A general schematic for 

a CETSA experiment is presented in Figure 5. To date, CETSA has been successfully used in 

several studies for target engagement using live cells as well as cell lysate [139, 144, 145].  An 

example that used CETSA is a study that confirmed a small molecule identified via a high-

throughput screening is an inhibitor targeting nicotinamide phosphoribosyltransferase [145].    

CETSA has also recently been successfully used in combination with multiplex quantitative 

proteomics to determine the thermal profile of more than 7000 proteins in human cells by mass 

spectrometry in samples treated with the kinase inhibitor staurosporin with over 50 proteins 

identified as potential targets [146]. The CETSA approach was also extended to membrane proteins 

of K562 cells employing different detergents including SDS, NP-40, CHAPS, CHAPSO, DDM, 

beta-octylglucoside, and Brij 35.  Of these, 0.4% of NP-40 was effectively used for target 

identification [144].  Despite all these apparent advantages, CETSA has some potential drawbacks. 

For example, multi-domain proteins might not be identified if the chemical does not have access to 

the binding pocket.  Moreover, in plant-based studies, there are relatively few proteins for which 

antibodies are available for western blot based detection. This is particularly acute in the case of 

algae as well.  Nonetheless, the potential use of this method is very exciting although no studies, to 

date, have been attempted in plants or algae [37, 38]. 

 

5.2 Restricted proteolysis as an approach to target identification 

Restricted proteolysis is a method commonly used to study conformational changes in protein 

structure as these structural shifts will change the exposure of the target site on the protein to the 

protease.  Additionally, complex formation between a drug or other compound and a protein renders 

the complex more resistant to proteolytic cleavage.  Exploiting this principle, Lomenick et al. 

developed a method called Drug Affinity Responsive Target Stability (DARTS) for target 

identification (Figure 6(a) [140, 147]. Briefly, a cell extract is treated with or without compound 

and then a protease such as thermolysin, subtilisin or pronase is added for a short duration to 

achieve limited proteolysis. The enriched target protein is subsequently detected using western 

blotting or mass spectrometry.  The DARTS method was defined using known drug targets 
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including Rapamycin bound to mTOR, alpha-ketoglutarate to ATP synthase subunit, Didemnin B to 

EF1-alpha; and FK506 to FKB12 [140, 148].   In another study, potential targets of grape seed 

extract components protective in colorectal cancer were identified using DARTS coupled with a 

mass spectrometry-based spectral counting method [142].   

Although the DARTS method is seemingly easy to implement, significant assay optimization is 

required including prior determination of the amount of protease enzyme to use and duration of the 

protease treatment.  This can be simplified if the primary goal is target validation but is quite 

daunting for target discovery.  

Recently another quantitative MS-based technique called Stability of Proteins from Rates Of 

Oxidation (SPROX) has been described.  Similar to DARTS, this technique relies on the increased 

stability of compound-target complexes but focuses on changes in stability under oxidative 

conditions rather than resistance to proteases or thermal stability [141] ( Figure 6(b)). SPROX 

assesses the thermodynamic properties of protein and protein-drug complexes upon hydrogen 

peroxide-mediated oxidation of methionine residues as a function of the chemical denaturant (e.g. 

guanidine hydrochloride or urea) concentration.  SPROX is compatible with ion-exchange or other 

fractionation techniques used in MS-based proteomics analysis.  Employing this technique, MS 

intensity of the peptides is used to generate thermodynamic information about the folding/refolding 

of the protein of interest induced by a denaturant such as urea/guanidine HCl.  The oxidation 

reaction that occurs in SPROX is irreversible in nature. Isobaric tags such as tandem mass tags 

(TMT) or isobaric tags for relative and absolute quantification (iTRAQ) are useful in analyzing 

pooled samples treated under different denaturant concentrations.  The reporter ion intensities from 

the peptides (oxidized/non-oxidized) are used to generate the chemical denaturation curves in 

SPROX.  Proteins showing stabilization in the presence of compounds can be deemed to be direct 

binding partners of the compound/drug.  An important disadvantage of this technique, as with other 

mass spectrometry technique, is the limited dynamic range imposed by the highly abundant proteins 

within the complex mixture and low affinity binding of the compound to non-target proteins.  

Compounds that are not stable in H2O2 may pose problems as they have limited solubility in 

aqueous buffer systems.  Moreover, certain proteins such as those anchored within lipid bilayers 

may be resistant to the denaturant used for this experiment.   

 

6 Case studies of chemical genetic approaches to improve lipid yield in plants and algae  

The field of chemical screening to induce desired phenotypes is still in its infancy.  Primarily 

developed and refined for mammalian cells and cell-free systems, there are relatively few successful 

applications in plant or algal systems.  Reviewed below are four studies highlighting the potential 

applications of chemical genetics in plants and algae.  
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6.1 Case study 1: Strigolactones 

Strigolactones are signaling molecules synthesized by plants.  They have variety of functions such 

as control of plant development and, as a part of root exudates, they promote symbiotic interaction 

between the plant and the microbes in the soil.  Moreover, parasitic weeds of genera Striga and 

Orobanche may reduce agricultural yield in the field.  Generally, the seeds of the weed can remain 

dormant in the soil for years but as soon as they sense strigolactones in the vicinity, they are 

induced to germinate [149].  This makes strigolactones biosynthesis a major target to discourage 

parasitic plant growth.  Several studies have attempted to use synthetic strigolactone analogs to 

induce suicide germination of the parasitic seeds but this had limited success owing to the high cost 

of synthesis and short half-life in soil.  Using a chemical genetics screen in Arabidopsis thaliana 

screening 10,000 compounds resulted in identification of 5 structurally similar chemicals that 

inhibit cotyledon expansion and greening [150]. These structurally related compounds were later 

named cotylimides (CTLs) and it was determined that they function to increase the endogenous 

strigolactones levels.  Further, using a genetic suppressor screen in A. thaliana against the CTL 

compounds, genes were identified that positively regulate strigolactone levels.   The identification 

of the CTL compounds has facilitated screening for mutations that affects the strigolactones 

synthesis and signaling.  Moreover, chemical screening has also been used to identify strigolactones 

antagonists. In silico screening of 4.7 million compounds (Library from Namiki Shoji Co. Ltd) was 

performed and 384 compounds were identified in the primary screen. Of these, 61 commercially 

available compounds were retested and 2-methoxy-1-naphthaldehyde (2-MN) was finally selected 

as a major inhibitor of strigolactones-dependent biochemical reactions in rice, Arabidopsis and 

Striga [151]. Thus, the identification of CLTs and subsequently 2-MN demonstrates the power and 

utility of chemical genetics in crop sciences. 

 

6.2 Case 2: Identification of inhibitors of UDP-glucose and UDP-sugar pyrophosphorylase  

UDP-sugars are substrates for several glycosyltransferase reactions and serve as a precursor for the 

biosynthesis of glycosylated compounds including starch. Both the UGP-glucose 

pyrophosphorylase (UGPase) and UDP-sugar pyrophosphorylase (USPase) have specificity for 

sugar-1-phosphates as substrates. Transgenic plants in which  the expression of one or both UGPase 

genes was reduced using molecular genetic approaches, presented with male sterility or decreased 

number of seed [152, 153]. The products of USPase activity are required in a variety of 

glycosylation reactions that lead to the production of many metabolites and structural components 

in plants [154]. Deletion of the gene encoding this enzyme in Arabidopsis results in male sterility. 

Reverse chemical genetics was used to identify specific inhibitors of both UGPase and USPase.  In 

this case, a chemical library of 17,500 compounds from the Chemistry Department of Umea 
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University, Sweden,  was used to screen for inhibitors of both UGPase and USPase and 13 

compounds that inhibits both UGPase and USPase were selected [155].  The most effective 

compound in inhibiting both UGPase and USPase was 6, 4H-1,3-benzoxazine-4-one.  This 

compound was ineffective in inhibiting invertase, hexokinase, and glucose-6-phosphate 

dehydrogenase demonstrating specificity of action.  

Chemical inhibition of UGPase in the diatom Phaeodactylum tricornutum demonstrated a role for 

this enzyme in carbon allocation.  In this organism, the main storage polysaccharide is 

chrysolaminarin, which plays a role similar to that of starch in algae.  Inhibition of UGPase led to a 

24% increase in lipid content most likely due to channeling of carbon to lipid rather than starch 

[79].  In another study, a hyper-lipid producing strain was generated in P. tricornutum by deletion 

of UGPase using the transcription activator-like effector nuclease (TALEN) approach, which 

resulted in a significant increase in TAG [156].  Similar results were obtained in a starchless mutant 

of Chlamydomonas due to disruption of ADP-glucose pyrophosphorylase [24].  Thus, the use of 

UGPase and USPase inhibitors in algae are potential tools for improving lipid production in green 

algae and diatoms for biofuel production purposes. 

 

6.3 Case study 3: Screening for modulation of growth, motility and photosynthesis in C. 

reinhardtii 

A unique HTS of 5,445 compounds was performed using the microalgae Chlamydomonas 

reinhardtii to identify compounds that maintain growth fitness, motility and/or photosynthetic 

capacity [92]. Of these, approximately 44% (2,397) of the compounds altered algal growth after 

short term acute exposure (4-8 hours).  Compounds that passed the first screen were then further 

screened for effects on phototaxis and photosynthesis. This screening identified 144 compounds as 

motility modulators and 350 as photosynthetic inhibitors; 18 were common to both assays.  Using 

chemical fingerprint similarity analysis, 4 clusters were identified based on unique patterns of the 

activity. The cluster I compounds predominantly inhibit growth while cluster II compounds reduce 

motility/phototaxis. Cluster III compounds are photosynthesis inhibitors. Compounds in Cluster IV 

inhibit growth and photosynthesis, as well as modulating motility.  The results were further 

analyzed to generate a Naïve Bayes model that predicts the bioactivity in Chlamydomonas based on 

the chemical fingerprints generated from the screening data to predict fitness inhibitors in silico.  

This is valuable to predict, for example, compounds that might induce lipid accumulation due to 

severe stress.  The entire screening data set is available for bulk download from 

http://chlamychem.utoronto.ca/.  
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6.4 Case study 4: Screening of small molecules for improving triacylglycerol production 

during growth in algae 

The three studies discussed below are similar and presented together as each is directed towards 

identification of small synthetic molecules useful in improving TAG production in algae and 

diatoms. In the first study, Franz et al., selected a series of chemical triggers that increase 

triacylglycerol production in marine algae [37].  The compounds tested were specifically selected to 

target a specific class of enzymes such as various kinases, fatty acid synthase (FAS), and lipases, as 

well as defence and oxidative signalling proteins.  A list of some of the compounds is presented in 

Table 4 and Figure 7.  Using a 96-well microplate-based assay, growth was measured using 

absorbance, chlorophyll contents were determined using fluorescence, and lipid production was 

assessed using lipophilic dye Nile Red.  A total of 52 bioactive molecules were screened against 4 

marine microalgal strains (Nannochloropsis salina, N. oculata, Nannochloropsis sp. and 

Phaeodactylum tricornutum) at a final concentration of 20 µM. Sodium bicarbonate was provided 

in the growth media as a supplemental source of carbon.  In the first phase of the assay, > 20% 

increase in the lipid production was considered a hit.   Selected compounds including cAMP, 

forskolin and quinacrine were active in all 4 strains; some compounds including (-)-epigallocatechin 

gallate (EGCG), cycloheximide and PTP inhibitor showed varied response based on the different 

strains.  To further assess the effects of the chemical triggers at larger scale, the compounds were 

added to 500-mL batch cultures.  Among the compounds that stimulated growth were forskolin, 

cAMP, quinacrine, orlistat and ECGC.  Most of the compounds were effective when they were 

added at the start of the experiment at low cell density.  Increase in lipid productivity was confirmed 

using additional orthogonal techniques such as 1H NMR, MALDI-TOF and GC-MS analysis [37]. 

In another study, a phenotypic screen was performed in the diatom Phaeodactylum tricornutum 

using a focused small molecule library called the Prestwick Chemical Library (total 1200 

compounds) [157].  This library contains compounds annotated with pharmacological information 

that includes prior knowledge concerning the primary metabolic targets.  The primary screen 

identified 160 compounds which were reevaluated and ranked to obtain an initial list of 40 

compounds, which were further tested in biological triplicate to identify the final list of 34 hit 

molecules.  The compounds selected were known to affect cell division and signaling, membrane 

transport or sterol metabolism. The targets of sterol metabolism included components of the sterol 

biosynthetic pathway including hydroxymethylglutaryl-CoA reductase, sterol 14-alpha 

demethylase, farnesyl pyrophosphate synthase, oxydosequalene cyclase (OSC), and cytochrome 

P450 oxidase/hydroxylase (Table 5). 

The third and most comprehensive large-scale screening effort for identification of activators of 

lipid storage in algae was completed by Wase et al [38]. In this study, a large library of compounds 

(ChemBridge Corp; 43,783 compounds) were tested for growth and lipid accumulation using the 
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freshwater model green algae C. reinhardtii.  Briefly, using a fixed concentration of 10 µM for the 

primary screening, 5 X 10
5
 cells per well were exposed to the compounds and allowed to grow for 

72 h in 384-well microplates then the lipophilic dye Nile Red was added to assess the lipid 

productivity and optical density at 600 nm was measured for assessment of growth. For quality 

control purposes, a Z-factor was measured to assess the dynamic range of the assay between vehicle 

control treated cells (growth without lipid production) and N-starved cells (no growth but with lipid 

production). Approximately, 0.079% of the compounds had a severe inhibitory effect on growth and 

about 3% of the compounds (1294) had a moderate inhibitory effect.  The primary screen selected 

367 compounds that induce lipid production at least 2-fold over untreated (DMSO treated) controls 

(Figure 3 Panel B, C, D).  The screening hits were confirmed by retesting over a range of 

concentrations from 0.25 to 30 µM and activity of 243 compounds was confirmed.  Based on the 

243 actives, a network similarity model was constructed using chemical fingerprints and a 

Tanimoto cutoff of 0.7 for structure-based clustering.  The hit compounds were classified into 5 

structural groups based on the following common features: Group 1contain a piperidine moiety; 

Group 2 a benzylpiperazine moiety; Group 3 a nitrobenzene moiety; Group 4: phenylpiperazine 

moiety and Group 5 an adamantane moiety. (See Figure 8 and Table 6)    

For further characterization, 15 high ranking lipid inducers were extensively examined for impact 

on cell growth, lipid productivity, starch accumulation, total proteins and photosynthetic pigments 

(chlorophyll a, b and total carotenoids).  Among these, subset of the selected compounds had a 

limited inhibitory effect on growth after 48 hours post exposure.  None of the compounds 

significantly reduced total cellular protein levels.  This is in contrast to what is generally observed 

with classic lipid induction methods using stress conditions such as N starvation, which may result 

in protein loss as high as 60% [32].  Also, of high significance was the fact that 7 of 15 increased 

starch content, while one compound, WD30030, significantly reduced starch levels as compared to 

the untreated control.  Only 2 compounds, WD10784 and WD10615, reduced chlorophyll a, 

chlorophyll b and total carotenoids levels significantly by about ~ 20 to 30%.  

To further understand the impact of the selected lead compounds on lipid accumulation, a subset of 

5 (chosen to represent the various structural classes) were assessed for fatty acid and complex lipid 

levels and composition by GM-MS and LCMS, respectively.   Fatty acid analysis revealed that most 

of the compounds induced significant increases in the levels of C16:0, C18:1(Δ9), C18:2(Δ9,12) 

C18:3 (Δ5,9,12).  Targeted complex lipid analysis (using LC-MRM/MS) revealed that total TAG 

content was increased more than 2.5-fold in cells treated with any of the 5 compounds.  

Importantly, there was no significant decline in galactolipids levels in cells with 4 of the 5 

compound treatments.  Since galactolipids are a major component of thylakoid membranes, this 

indicates the origin of the stored fatty acids and TAGs is not from plastid degradation or turnover.    
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This conclusion is supported by the maintenance of photosynthetic pigments and is in direct 

contrast to what occurs in N-deprivation induced lipid accumulation [158].  

Using the same 5 compounds, cellular intracellular polar metabolite levels were profiled using GC-

MS.  Multivariate analysis, demonstrated overlapping and distinct impacts of each compound on 

central metabolism.  There was a significant increase in accumulation of glucose-6-phosphate and 

fructose-6-phosphate compared with vehicle treated controls. These metabolites are proposed to 

drive carbon flux toward lipid synthesis. It was also shown that most amino acid levels were either 

maintained or significantly increased in abundance.  This is in direct contrast to what occurs in N-

deprivation where amino acid levels are reduced [30].  To test the general utility of these lipid 

inducing compounds, these compounds were tested in 3 additional freshwater algae, Chlorella 

vulgaris UTEX395, C. sorokiniana UTEX1230, and Tetrachlorella alternans UTEX2453, which 

are more relevant for commercial biofuel production.  Similarly, the compounds induced significant 

increases in lipid production in a dose-dependent manner. (Please see Table 6 and Figure 8 and 

reference [38]).  

 

This is indeed an exciting new area of research for algal biologists whereby chemical genetics can 

be successfully applied in both targeted [37] and unbiased screening [38, 157] of small compounds 

to select for those that induce TAG production in microalgae without severe stress that limits 

growth and biomass.  Further, the results of these 3 studies in microalgae from diverse niche 

habitats (marine and freshwater) demonstrate the power and utility of chemical genetics to select 

compounds that induce a useful phenotype such high lipid production.   Additionally, metabolomics 

analysis suggests other products may be enriched dependent upon the channeling of metabolite 

substrates into various pathways, thus opening the door to select compounds that help to produce a 

variety of high value products in a low cost sustainable manner.   

 

7 Limitations / Bottlenecks of chemical screening in algae  

 

Chemical-genetics techniques, while extremely powerful in perturbing cellular targets and inducing 

a phenotype of interest, has been employed in a very limited number of cases as reviewed above.  A 

challenge of this technology is that, for non-targeted in vivo approaches, identification and 

validation of the ultimate target causing the desired phenotype is difficult and requires sophisticated 

biochemical, biophysical and/or immunochemical methodologies.  Immunological approaches are 

constrained by the few antibodies available that interact specifically with algal antigens.  Thus, 

identification will depend on novel approaches including synthesizing compound derivatives that 

generate affinity ligands detectable by mass spectrophotometry and other biophysical methods.   
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The second bottleneck for routine deployment of chemical genetics in algae is the prohibitively high 

cost of chemical library screening. To aid in the initial screening efforts, as reviewed above, 

investigators may employ the services of screening centers that are open to academic researchers. 

Moreover, commercial companies offer pre-defined libraries to screen hundreds rather than 

thousands of compounds thereby minimizing the initial cost of screening and facilitating screening 

method development.  To popularize chemical genetics as a standard technology, efforts are needed 

to provide easy access to chemical libraries and expertise to exploit them. Websites such as 

PubChem and ChEMBL are filling part of this gap and researchers can mine these websites for 

information.  

The third bottleneck is limitations to cultivation of photosynthetic organisms in microtiter plates as 

required to screen large numbers of unique compounds.  One concern is poor aeration.  This can be 

improved by using microplate membranes thereby minimizing contamination while allowing gas 

exchange.  Regarding light delivery, LED lights should be used for microplates since they do not 

produce heat in the form of infrared (IR) radiation compared with fluorescent light sources.  This 

will also minimize both the evaporation of media from the microplate well and temperature 

fluctuations.    

Finally, one of the major limitation to algal chemical screening and studying the induced 

phenotypes is need for more powerful instrumentation and computational tools.  These are required 

to permit full automation of large scale algae-based screens, including phenotypic selection and 

microscopy-based screening.  Currently commercially available high content confocal microscopes 

are designed mainly for mammalian cell drug screens and must be adapted to algal/plant systems. 

It  is also noted that chemical screening in academic laboratories is a complementary avenue to 

industrial pursuits. Academic researchers tend to operate outside of the commercial development 

paradigm and are more focused on discerning mechanistic understandings of the biological 

phenomenon as required to provide information on potential targets.  While industry possesses the 

resources and expertise to develop a biological product, academic researchers have greater 

exploratory freedom as they are less encumbered by the rapid pace of industrial product 

development. These complementary goals necessitate collaborative efforts which will ultimately aid 

in translating initial findings into tangible products. 

 

8 Conclusions and future opportunities in algal chemical genetics 

As Thomas Jefferson wrote, “The greatest service that can be rendered to any country is to add a 

useful plant to its culture”, citing grains and oils as examples [159].  Recent advances regarding the 

biochemistry and regulation of algal oil production using directed and chemical genetics as 

reviewed here lend a new vibrancy to fulfill the promise of renewable, low cost energy sources to 
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reduce the need for fossil fuels and other petroleum based products.  Beyond triglycerides, these 

approaches are opening the door to innovative approaches to employing algae as producers of many 

biomolecules of commercial and societal value. This information database has increased 

exponentially as genomics technologies began to dominate the field of algal research and provide 

future opportunities to study these targets using orthogonal approaches such as chemical genetics.  

 Chemical biology is a powerful complementary tool to select compounds that induce in cells or 

purified biochemical targets phenotypes and activities of interest.  This approach can be very 

effective in overcoming redundancy and lethality associated with certain mutations, which is a 

hallmark of traditional genetics.  There are limitations, however, that must be overcome including: 

careful experimental design to ensure specificity and selectivity of high throughput screens; choice 

of compound libraries that provide a wide range of chemical core structures suitable to penetrate 

cell walls; and the expense of library screening. Financial constraints in screening large chemical 

libraries may prevent wide use in most academic laboratories and commercial entities may not have 

the capital to invest in a large number of chemical screens.  Partnering between government funding 

agencies and academic and commercial organizations are highly desired for this purpose.  A parallel 

approach, using small libraries against known targets (e.g. critical enzymes from lipid metabolism 

or central carbon metabolism) is also useful and may be conducted at low cost.   It must be 

emphasized, that the results so generated would help to define more extensive and mature 

hypotheses necessary to understand and exploit lipid metabolism of algal bio-manufacturies.  

A major limitation of algal chemical genetics is understanding the chemically induced phenotype in 

mechanistic detail.  This will require a more complete understanding of algal metabolism and 

genetics, novel cell-based assays, more powerful instrumentation, computational algorithms.  

Acquisition of this information is made further made possible by NextGen sequencing and other 

“omics” technologies.  Additionally, the new techniques such as DARTS, CETSA and SPROX 

designed to address unbiased identification of the target that is responsible for a particular 

phenotype (e.g. increased TAG production) are feasible, although not yet employed in algae.  

Additionally, much information is being generated by employing large-scale quantitative 

proteomics (label-free or using isobaric peptide labelling techniques (iTRAQ/TMT) or data 

independent techniques such as SWATH-MS and metabolomics to understand complex pathway 

shifts associated with small compound treatments even when the primary target is unidentified [38]. 

 Thus, the combination of chemical genetics and new “Omics” techniques, the mechanism and 

specific targets of chemically induced phenotypes can now be probed at the intracellular levels.    

Another major limitation in applying these approaches to the microalgae and other microorganisms 

is the limited understanding of the organisms’ physiology, biochemistry and genetics.  Although 

collections of genetic variants are available for mammalian, mouse, Drosophila and Arabidopsis 
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useful to design cell-based assay systems, these are not available for the microalgae or other 

microorganisms of commercial interest (e.g. cyanobacteria, diatoms). However, this can be 

improved by the generation of a collection of algal bioactive molecules related to general lipid 

metabolism and molecules that target the central carbon metabolism.   Moreover, public repositories 

of chemical screening data for photosynthetic organisms is limited at this time and it is suggested 

that deposition of screening and chemical structure data to such repositories be required for 

publication of these results.   

In summary, chemical genetics has gained considerable momentum as a tool to probe algal biology 

and to fulfill the promise of these organisms as low cost, high value, sustainable feedstock for 

biofuels and other high value products.  These methods can be directed to identify molecules that 

induce or potentiate a natural biological process, which allows us to address basic mechanistic 

questions about the organism and its response to its environment, as well as offering opportunities 

to employ algae in a variety of commercial and environmental purposes.  These include, but are not 

limited to production of: oils for fuel and nutrition; anti-oxidants; pigments, vitamins and medicinal 

products.  
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Box 1: Quality control (QC) and hit identification methods 

 

Percent inhibition/activation cut-off: For identification of “hits” using this method, the screening 

data is first normalized and then an arbitrary cut-off value is assigned that is relative to the assay 

signal window.  This method does not have any statistical basis and is primarily used in small 

molecule screens with strong controls. 
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Average +/- 3 SD: In this method, cut-off is generally set to a value that is 3 times standard 

deviation above or below the sample average [160].   Because of the use of average and standard 

deviation, this method is sensitive to outliers. 

 

Median +/- k MAD: to blunt the effect of outliers, it was proposed that a cut-off of k MAD should 

be used to identify ‘hits’.  A recent study has shown that MAD-based hit selection strategy has 

lower false discovery rate as compared to the mean +/- SD method [161]. 

 

Percent of control (POC):  is a normalization method where compound treatment outcome is 

normalized relative to the control.  For example, the raw measurement for each treated sample is 

divided by the average of the control values given by following equation. 

 

 ercent of control ( OC) 
 i

c
   100 

where, xi is the raw intensity (optical readout) of the i
th 

compound and  ̅ is the mean intensity of the 

control. 

 

Normalized fold change (NFC): NFC is a control based method where ratio of compound 

treatment outcome and the mean of control are divided by the difference in the control and the 

compound measurements.   

 ormali ed Fold Change ( FC)  
 i   c̅

c̅  i
 

But if two measurements were recorded such as fluorescence intensity for lipid accumulation (Nile 

Red fluorescence) and optical density of the cells, then the NFC can be calculated using following 

formula (as used in a recent study [38]).  

 ormali ed Fold Change ( FC) 
   R   C R

̅̅ ̅̅ ̅

 O   CO 
̅̅ ̅̅ ̅

 

where, xNR is the Nile Red fluorescence of the compound X and CNR is the average Nile Red 

fluorescence of negative control, XOD is the optical density of compound X and COD is the average 

optical density of negative control. 

 

Z-factor: Z-factor is a dimensionless measurement where both positive and negative control are 

used.  Generally, 4 parameters are used for calculating Z-factor: the mean (µ) and standard 

deviations (∂) of both positive and negative controls are used [162]. 
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   factor 1 
(3∂pc 3∂nc )

  pc  nc  
 

Where, ∂pc   standard deviation of positive control; ∂nc = standard deviation of negative control; µpc 

= mean of positive control and µnc   mean of negative control.  The  ’-factor can ideally never 

e ceed 1.  High  ’-factor > 0.5 defines a robust assay, while between 0 and 0.5 defines a marginal 

assay. If the  ’-factor is less than 0, there is too much overlap between the positive and negative 

controls and the assay is invalid. 

 

Strictly Standard Mean Difference (SSMD): This method has been widely used for RNAi 

screening data since it has a statistical basis and has a better control on false negative and false 

positive rates.  This method captures effect size.  SSMD has the ability to handle controls with 

different effects.  Although SSMD is primarily used for RNAi screen but can be used for small 

molecule screen as well [163] 

     
mean(    ) mean(    )

√std(    )  std(    )2

 

 

BScore: Normally in a large-scale screening experiment, both positive and negative invariably 

shows variability since average values and standard deviation are generally influenced by statistical 

outliers, which in current situation are potential hits.  To circumvent this problem, a more robust 

analysis method such as B-score can be applied [164]. The B-score is a method similar to  ’-score 

but uses dispersion index and this method is more resistant to outliers and error measurement 

distributions.  The residual (rmnx) of a compound at row m and column n on the plate x can be 

obtained by following equation as provided by [100]: 

 

rmn    mn    ̂mn    mn  (  ̂  Rm ̂ Cn ̂) 

 

The residual (rmnx) is the difference between the observed result (Ymnx) and the fitted value ( ̂mn ) 

defined as estimated mean value of the plate ( ̂ )+ estimated systematic measurement offset for m
th

 

row on plate x ( Rm ̂) + estimated systematic measurement offset for n
th

 column on plate x (Ĉn )).  

For each plate x, the adjusted median absolute deviation (MADx) is obtained from the rmn   

(MADx).  Thus, the B-score can be calculated as: 
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rmn 

 A  

 

 

For calculation of the B-score, first Tukey’s two-way median polish is calculated to account for 

both column and row effect within each plate.  The resultant residual (rmnx) is then divided by the 

median absolute deviation to standardize each plate and account for the inter- and intra-plate 

variation.  Thus, the B-score is advantageous as it is non-parametric, it minimizes measurement bias 

due to position effect and is resistant to outliers.   
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Figure legends: 

Figure 1: Schematic representation of lipid biosynthesis in microalgae. AGPase ADP-glucose 

pyrophosphorylase; AGPAT 1-acylglycerol-3-phoshphate acetyltransferase; ACL ATP citrate 

lyase; CS citrate synthase; DGAT Diacylglycerol acyltransferase ;GPD2 glycerol-3-phoshphate 

dehydrogenase; GPAT acyl-CoA:glycerol-3-phosphate acyltransferase; MCAT malonyl coenzyme 

A:acyl carrier protein transacylase; PAP phosphatidic acid phosphatase;  PDAT 

phospholipid:diacylglycerol acyltransferase; PDH Pyruvate dehydrogenase; PK pyruvate kinase 

 

Figure 2: Comparison of classical and chemical genetic screening in algae.  A) Forward genetic 

screening generally involves performing chemical mutagenesis of a population of cells and then 

screening for a phenotype of interest. B) Forward chemical genetics involves treating cells with a 

single chemical from a synthetic compound library and performing phenotypic selection.  After 

identification of a “hit” compound, the target is identified using speciali ed strategies (see text 

section 6).  C) Reverse genetics involves directed mutagenesis of a specific gene followed by 

assessment of a desired activity or phenotype.  D) Reverse chemical genetics involves the use of 

small molecules targeting a single protein.   

 

Figure 3: Chemical screening plate layout and data analysis A) Normally commercial chemical 

libraries are provided as 96- or 384-well plate format.  In a 96-well format, 80 compounds are 

plated in the middle and first and last columns are kept empty for plating the controls.  Eight 

positive and 8 negative controls are plated in a typical 96-well plate.  For a typical assay, during the 

primary screen, first the compounds are added to desired final concentration in wells (indicated by 

green circles), then a fixed number of cells are added to each well.  For the negative control (blue 

circles) instead of the compound, the same volume of solvent (for example DMSO) is added; in the 

first column, a positive controls is placed (red circles).  Plates are incubated or other manipulations 

done and then activity is measured for every well by automated plate reading.  B) Results of Z-

factor calculation to assess the assay quality.  Generally Z-factor > 0.5 indicates good quality of 

assay. C) Growth data of Chlamydomonas screening of 43,000 compounds for lipid inducers.  D) 

Representative screening output after normalization and ratio calculation for lipid inducers. Lipid 

accumulation measured as relative fluorescence after Nile Red (NR) staining of cells treated with 

compound relative to cells treated with vehicle (DMSO).  Using a cut-off of 2.5-fold, 243 

compounds were identified as “hits” or lipid inducers (highlighted in yellow).  ata for panel B, C & 

D is from Wase et al. (2017) [38].  

 

Figure 4: Schematic map of central carbon and lipid metabolism showing possible targets for 

inhibition or activation.  Metabolic steps are represented by arrows.  Genes encoding the enzymes 

are labeled in red.  Chemical inhibitors of enzymes are shown in orange boxes while chemical 

activators are shown in green boxes.  Abbrevations: AGPase ADP-glucose pyrophosphorylase; 

AGPAT 1-acylglycerol-3-phoshphate acetyltransferase; DGAT Diacylglycerol acyltransferase ; 
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ENO Enolase; FUM Fumarate; G3PDH glycerol-3-phosphate dehydrogenase; GK 

Hexokinase/glucokinase; GPAT acyl-CoA:glycerol-3-phosphate acyltransferase; IDH Isocitrate 

dehydrogenase; MCAT malonyl coenzyme A:acyl carrier protein transacylase; MDH Malate 

dehydrogenase; PAP phosphatidic acid phosphatase;  PDAT phospholipid:diacylglycerol 

acyltransferase; PDH Pyruvate dehydrogenase; PEPC phosphoenoylpyruvate carboxylase; PGK 

Phosphoglycerate kinase; PK pyruvate kinase; SDH Succinyl dehydrogenase 

 

Figure 5: Schematic workflow of CETSA method. Cells are grown and cell lysate was 

obtained.  The cell lysate was treated with either drug or vehicle (DMSO), and aliquots are 

subjected to heating. After cooling, the soluble protein fraction is separated from precipitated 

proteins by centrifugation. The abundance of the native target proteins can be analyzed by either 

antibody-based western blotting method or by MS-based approaches.  Figure adopted from [146] 

with permission from the publisher. 

 

Figure 6.  Comparison of two methods for target identification.  (A) DARTS workflow. Cell 

lysates are treated with vehicle or compound, and then subjected to limited proteolysis. Target 

proteins are stabilized against proteolysis by bound compound, and thus enriched. The samples are 

then analyzed by either immunoblot (target validation) or mass spectrometry (target 

identification).  B) Schematic representation of the SPROX experimental workflow. A complex 

protein mixture (e.g., a cell lysate) is subjected to two treatments, with and without drug. In each 

analysis, aliquots of the protein mixture are diluted into buffer containing increasing concentrations 

of a chemical denaturant guanidinium hydrochloride (GdmCl). The protein samples in each GdmCl-

containing buffer is then allowed to react with a fixed amount (30%) of hydrogen peroxide for a 

limited time. The reaction time and concentration of hydrogen peroxide are tuned such that the 

thioether groups in the side chain of methionine residues are selectively oxidized. The protein 

oxidation reaction is stopped by adding catalase enzyme.  The protein samples in each tube are then 

further reduced, alkylated, digested by trypsin, and labelled with iTRAQ 8-plex reagents (from 

isobaric label 113 to 121).  Finally, the samples are pooled together.  Samples can be optionally 

fractionated using Strong cation exchange or HILIC chromatography and submitted to quantitative 

proteomic analysis.  The non-oxidized and oxidized methionine-containing peptides are quantified 

as a function of the SPROX buffer denaturant concentration. Proteins that are stabilized, 

destabilized or showing no effect can then be analysed. Adapted from reference [140] with 

permission from publisher. 

 

Figure 7: Structures of compounds selected as inducers of lipid body accumulation in a phenotypic 

screen in 4 marine microalgal species.  Structure information was obtained from Franz et al(2013) 

[37].   
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Figure 8: Structures of compounds selected by lipid accumulation in a large high throughput 

screening in the green algae Chlamydomonas reinhardtii.  Structure information was obtained from 

Wase et al(2017) [38].  

 

 

 

 

 

Table 1.  Summary of studies employing directed molecular engineering methods to enhance 

lipid production 

 

Genetic 

method 
Protein Functional role 

Enginee

red 

algae 

Outcome 

Refe

renc

es 

TCA enzymes 

Knockdow

n 

Phosphoenolp

yruvate 

carboxylase 1, 

PEPC1 

Formation of oxaloacetate from 

phosphoenolpyruvate and regulates 

carbon flux 

Chlamyd

omonas 

reinhard

tii 

28.7–48.6% increased TAG [71] 

RNA 

interferenc

e 

Citrate 

synthase (CS) 

Regulates C flux to citrate synthesis 

or TAG 

Chlamyd

omonas 

reinhard

tii 

169.5% increase d TAG [27] 

Lipid Metabolism 

Overexpre

ssion 

ACCase Catalyzes malonyl-CoA formation   Cyclotell

a 

cryptica 

No improvement in TAG 

levels 

[70] 

Overexpre

ssion 

ACCase Catalyzes malonyl-CoA formation Navicula 

saprophi

la 

No improvement in TAG 

levels 

[69] 

Overexpre

ssion 

KAS 2 FA biosynthesis regulation  Chlamyd

omonas 

reinhard

tii 

Increase in C18 fatty acids 

(lipid quantitation not 

known) 

[72] 

Overexpre

ssion 

myristic acid 

thioesterase  

(C14-TE) 

Hydrolyzes acyl-ACP to release free 

FAS 

Phaeoda

ctylum 

tricornut

um 

C 14:0 increased 15% [73] 
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Overexpre

ssion 

lauric acid 

thioesterase 

(C12-TE) 

 Phaeoda

ctylum 

tricornut

um 

C 12:0 increased 6.2% [73] 

Overexpre

ssion 

Lauryl-ACP 

thioesterase 

and FatB1 

thioesterase 

 Chlamyd

omonas 

reinhard

tii 

No change  [72] 

Overexpre

ssion 

stearoyl-ACP 

desaturase 

Catalyzes the conversion of stearic 

acid (18:0) to oleic acid (18:1) 

Chlamyd

omonas 

reinhard

tii 

Total FA increased by 28% [66] 

Overexpre

ssion 

microsomal 

Δ12-

desaturase 

Catalyze conversion of oleic acid to 

linoleic acid 

Nannoch

loropsis 

oceanica 

arachidonic acid increased 

by 50%–75%  

[67] 

Knockdow

n 

long-chain 

acyl-CoA 

synthetases 

(LACSs) 

 Chlamyd

omonas 

reinhard

tii 

45-55% increased total 

lipids 

[165] 

TAG biosynthesis enzymes 

Overexpre

ssion 

DGAT2 Responsible for addition of acyl 

group at sn-3 position of DG 

Phaeoda

ctylum 

tricornut

um 

35% increased TAG and 

76.2% increased EPA 

[166] 

Overexpre

ssion 

DGAT2-1; 

DGAT2-5 

 Chlamyd

omonas 

reinhard

tii 

20% and 44% increase in 

the DGAT2–1 and 

DGAT2–5 overexpression 

lines, respectively 

[59] 

Overexpre

ssion 

DGAT2-a,b,c  Chlamyd

omonas 

reinhard

tii 

No significant change  [60] 

Overexpre

ssion 

DGAT2  Thalassi

osira 

pseudon

ana 

1.52 to 1.95-fold increased 

TAG 

[167] 

Overexpre

ssion 

DGAT4  Chlamyd

omonas 

reinhard

tii 

1.5 to 2.5-fold increased 

TAG  

[168] 

Overexpre G3PDH + TAG biosynthesis pathway enzymes Chlamyd Two-fold increased TAG  [74] 
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ssion GPAT + 

LPAT + PAP 

+ DGAT 

omonas 

minutissi

ma 

Knock 

down 

PDAT1 acyl-CoA–independent enzyme PC -

> TAG 

Chlamyd

omonas 

reinhard

tii 

25% decrease in TAG [58] 

Overexpre

ssion 

GPAT acylation of glycerol 3-phosphate by 

glycerol-3-phosphate acyltransferase 

Chlamyd

omonas 

reinhard

tii 

50% increase in the TAG  [26] 

 TAG storage and lipid body formation 

RNA 

interferenc

e 

MLDP (major 

lipid droplet 

protein) 

Major Lipid droplet protein Chlamyd

omonas 

reinhard

tii 

Increased LD size with no 

changes in TAG content  

[169] 

 PNPLA3 Membrane bound protein associated 

with LDs 

Phaeoda

ctylum 

tricornut

um 

70% increase TAG [76] 

amiRNA 

repression 

Nitrogen 

regulatory 

protein PII 

protein 

Negatively controls TAG 

accumulation in LDs during nitrogen 

starvation 

Chlamyd

omonas 

reinhard

tii 

increased LDs and a 1.5-

fold increased TAG  

[170] 

 Transcription factors  

Overexpre

ssion 

bZIP 

transcription 

factor 

bZIP TF is stress regulator and 

associated with lipid metabolism 

Nannoch

loropsis 

salina 

203% increased FAME 

productivity under high salt 

stress 

[68] 

Overexpre

ssion 

DOF-type 

transcription 

factor 

Involved in FA and glycerolipid 

biosynthesis regulation 

Chlamyd

omonas 

reinhard

tii 

A 2-fold increase of total 

lipids 

[85] 

CRISPR-

Cas9 + 

RNAi 

interferenc

e 

Zn2Cys6 

transcription 

regulator 

Zn/cys activates the transcription of 

genes involved in galactose and 

melibiose metabolism 

Nannoch

loropsis 

gaditana 

Improve C partition to 

lipids and doubles lipid 

production in N replete 

condition. 

[25] 

Overexpre

ssion 

AtWR1 

transcription 

factor 

transcription factor WR1 controls 

seed oil accumulation in Arabidopsis 

thaliana, 

Nannoch

loropsis 

salina 

Increased total lipids by 

36.5 and 44.7% 

[86] 

Overexpre Sepin Sepin regulates the activity of GPAT Phaeoda Increased TAG by 57% [35] 
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ssion overexpressio

n 

ctylum 

tricornut

um 

  Other targets   

Overexpre

ssion 

NAD(H) 

kinase 

Catalyzes synthesis of NADPH Chlorell

a 

pyrenoid

osa 

110.4% increase in lipid 

levels 

[48] 

Repression NRR1 Transcriptional regulation of lipid 

biosynthetic genes under N-

deprivation 

Chlamyd

omonas 

reinhard

tii 

50% decrease in TAG 

during nitrogen-deprivation 

[58] 

RNA 

interferenc

e 

AMP 

deaminase 

converts adenosine monophosphate 

(AMP) to inosine monophosphate 

(IMP) 

Chlamyd

omonas 

reinhard

tii 

25% higher lipid 

accumulation 

[77] 

Knockdow

n 

chrysolaminari

n synthase 

catalyzes the synthesis of glucan 

using UDP-glucose as a substrate 

Thalassi

osira 

pseudon

ana 

Increased TAG > 2-fold [78] 

Knockdow

n 

ADP glucose 

phosphorylase 

Rate limiting enzyme of starch 

synthesis 

Chlamyd

omonas 

reinhard

tii 

Increased TAG by 7-fold  [24] 

Overexpre

ssion 

Haematococcu

s oil globule 

protein 

(HOGP) 

Protein associated with LDs Phaeoda

ctylum 

tricornut

um 

25% increase in total FA [171] 

RNAi 

interferenc

e 

UDP-glucose 

pyrophosphor

ylase 

(UGPase) 

catalyzing the reversible production 

of UDP-Glc and pyrophosphate (PPi) 

from glucose-1-phosphate (Glc 1-P) 

and UTP 

Phaeoda

ctylum 

tricornut

um 

45% increase in TAG [79] 

 

 

 

 

 

Table 2: List of screening library collections. 

Chemical library Collection Website Type 
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The NExT Screening 

Libraries https://next.cancer.gov/discoveryResources/resources_ndl.htm Academic 

Stanford High Throughput 

Bioscience Center http://htbc.stanford.edu/compounds.html Academic 

Charles River Compound 

Screening Libraries 

https://www.criver.com/products-services/discovery-

services/assay-development-and-screening/compound-

screening-libraries?region=3601 Commercial 

Prestwick Screening libraries 

http://www.prestwickchemical.com/libraries-screening-

libraries.html Commercial 

Boston University Chemical 

Library Consortium (CLC) http://www.bu.edu/cmd/center-overview/biology-outreach/ Academic 

ChemBridge Corp http://www.chembridge.com/screening_libraries/ Commercial 

Milner Therapeutics Institute 

(University of Cambridge) https://www.milner.cam.ac.uk/consortium/ Academic/commercial 

Otava Agrochemical libraries 

http://www.otavachemicals.com/products/screening-

compounds-for-agrochemical-discovery Commercial 

LATCA (University of 

California Riverside) http://www.thecutlerlab.org/2008/05/latca.html Academic 

Maybridge Hitfinder 

collection https://www.maybridge.com/ Commercial 

Life Chemicals Screening 

libraries http://www.lifechemicals.com Commercial 

Analyticon Discovery https://ac-discovery.com/screening-libraries/ Commercial 

Academic Drug discovery 

consortium http://addconsortium.org/interior-partnerships-az.php Academic 

PCBIS Plateforme de Chimie 

Biologie Integrative de 

Strasbourg (Screening 

Strasbourg Platform) http://www.pcbis.fr Academic 

Broad Institute Chemical 

Biology Program https://www.broadinstitute.org/chembio-therapeutics Academic 

 

 

 

 

Table 3: Selected commercial and open-access software packages for statistical analysis of 

HTS screening data 

Tool Features 
Programmi

ng language 

Refe

renc

e 

Type 
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HTS screening software 

Mscree

n 

Web-based compound library management and QC PHP, Oracle [172] Open 

source 

NextR

NAi 

design and evaluation of genome-wide RNAi libraries Perl [173] Open 

source 

K-

Screen 

Web-based application for chemical library, primary and 

secondary screening data 

R/PHP, SQL [174] Open 

source 

HTS 

correct

or 

Statistical analysis of HT-screening data C# [175] Open 

source 

HTSan

alyzeR 

HTS screening data analysis, gene set enrichment and 

network analysis 

R/Biocondu

ctor 

[176] Open 

source 

HTSvis Web based shiny application for HT-screening data 

analysis 

R/Biocondu

ctor 

[177] Open 

source 

cellHT

S2 

Analysis of cell based screening R/Biocondu

ctor 

[178] Open 

source 

RNAit

her 

Statistical analysis of HTS-RNAi screen R/Biocondu

ctor 

[179] Open 

source 

HiTSee

kR 

Web platform for analysis of HT-screening data R/Biocondu

ctor 

[180] Open 

source 

bioassa

yR 

cross-analysis of small molecule bioactivity R/Biocondu

ctor 

[181] open 

source 

Tobco 

Spotfir

e 

Analysis of large volume screening data and compound 

structure analysis 

 -- Com

merci

al 

Chemoinformatics software 

Tobco 

spotfire 

Commercial software for chemical compound 

visualization, dose-response assay, library management 

 -- Com

merci

al 

HTS 

navigat

or 

Windows application for chemoinformatics data analysis. -- [182] Open 

source 

DataW

arrior 

Java based free chemoinformatics program for data 

visualization and analysis 

Java [183] Open 

source 
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Chem

Mine 

Web-based tool for chemoinformatics analysis R/Biocondu

ctor 

[184] Open 

source 

chemVi

z 

Cytoscape plugin for chemoinformatics data analysis Cytoscape 

plugin 

 Open 

source 

Vortex Interactive data visualization and analysis solution for 

combined chemoinformatics and bioinformatics analysis 

--  Com

merci

al 

 

Table 4:  Assessment of lipid induced in marine algae by chemicals with known targets and 

mechanisms of action (data based on [37].  ) 

 

Compound Target 
% increase NR 

fluorescence 

Algae 

strain 

Referenc

e 

  Lipase inhibitors  

RHC 80267 Diacylglycerol lipase inhibitor > 50 various marine 

algae 

 

Orlistat(tetrahydrolips

tatin) 

Lipase inhibitor > 50 various marine 

algae 

JZL184 hydrate Monoacylglycerol lipase 

inhibitor 

> 70% various marine 

algae 

Halopemide phospholipase inhibitor > 100% various marine 

algae 

PTFK (Palmityl 

trifluoromethyl 

ketone) 

Phospholipase inhibitor > 70% various marine 

algae 

ET-18-OCH3 inhibitor of 

phosphatidylinositol-specific 

phospholipase 

> 50% various marine 

algae 

Antioxidant compounds  

BHA (Butylated 

hydroxyaniaole) 

Antioxidant > 250% various 

marine algae 

[37] Resveratrol Antioxidant, anticancer, 

antifungal, inhibitor of COX-1 

> 250% various 

marine algae 

Propyl Gallate Antioxidant, inhibitor of > 250% various 
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microsomal lipid peroxidation marine algae 

(-)-Epigallocatechin 

gallate 

Antioxidant, cannabinoid 

receptor agonist 

> 200% various 

marine algae 

Apigenin Plant hormone, CYP2C9 

inhibitor 

> 80% various 

marine algae 

Lipoxygenase inhibitors  

Caffeic Acid LOX > 200% P. 

tricornautum 

 

Gossypol LOX > 200% P. 

tricornautum 

Protein tyrosine kinase inhibitors  

BPDQ PTK > 100% N. salina  

Genistein PTK > 50% N. salina 

Butein PTK > 80% (H2O) P. 

tricornautum 

Protein tyrosine phosphate inhibitors  

PTP inhibitor II PTP > 80% N. salina  

Cantharidin PTP > 150% (H2O) P. 

tricornautum 

 

 

Table 5: Selected compounds that induced lipid accumulation in the diatom Phaeodactylum 

tricornutum CCMP 2561. Data based on [157].   

 

CHEMBL ID 
Chemical 

Name 
Target 

TAG 

accumulation 

Referenc

e 

CHEMBL959 
Xylometazolin

e 
Adrenergic receptor agonist High NR signal 

[157] 

CHEMBL951

4 
Mevastatin HMG-CoA reductase High NR signal 

CHEMBL691 Simvastatin HMG-CoA reductase High NR signal 

CHEMBL606 Allopurinol inhibitor of xanthine oxidase High NR signal 

CHEMBL599 Nocodazole 
Microtubule depolymerizing 

agent 
High NR signal 
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CHEMBL55 Rimantadine Proton pump inhibitor High NR signal 

CHEMBL544

40 
Alverine Serotonin receptor antagonist High NR signal 

CHEMBL429 
Ethynylestradi

ol 
Steroid hydroxylase substrate High NR signal 

CHEMBL403 Estrone Steroid hydroxylase substrate High NR signal 

CHEMBL39 Ketoconazole 
sterol 14-alpha demethylase 

inhibitor 
High NR signal 

 

Table 6: Selected compounds that showed more than 2.5-fold lipid induction in green algae 

Chlamydomonas reinhardtii. The primary screen was performed at a single dose of 10 µM to 

identify 367 compounds as hits.  The lipid accumulating capacity was further confirmed using a 

dilution series (dose-response assay) at concentration ranging from 30 µM to 0.25 µM.  Table 

showing fold change values of lipid accumulating capacity (relative to vehicle treated control) from 

the primary and confirmatory screen. Data based on [38] for compounds tested in Chlamydomonas 

reinhardtii.  Please see Figure 8 for the compound structures. 

 

 Primary screen   

Compounds 10 µM 30 µM 15 µM 10 µM 

WDTHQ130 2.28 20.71 20.86 11.98 

WD40844 12.44 19.77 21.53 13.97 

WD40157 2.51 18.58 25.48 10.34 

WD30999 2.90 13.04 16.13 8.91 

WD30030 2.90 21.10 15.48 4.46 

WD20542 2.75 19.74 22.79 11.58 

WD20067 2.54 19.83 18.82 8.70 

WD10872 2.97 18.56 21.56 10.80 

WD10784 2.14 13.69 21.46 3.63 

WD10738 4.67 21.78 20.48 10.18 

WD10615 2.97 12.47 18.52 9.49 

WD10599 2.44 9.85 10.08 9.28 

WD10461 4.38 21.07 19.19 8.95 

WD10264 3.58 8.29 16.37 6.76 

WD10256 2.18 12.43 14.61 7.30 
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