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a b s t r a c t 

Various nanoscale materials that contain high density of interfaces highlight an optimistic 

perspective of discovering radiation tolerant materials. However, given the huge dimen- 

sional contrast between the core structural components of nuclear reactors and many 

nanoscale treatments for improving materials radiation resistance, the corresponding pre- 

dictive models are required to possess a delicate balance between resolution and efficiency. 

Motivated by this, a three-scale homogenisation scheme is introduced in this article, and 

a continuum model for the long-time interstitial-sink behaviour at interfaces is derived 

with all important nanoscopic parameters and mechanisms properly retained. Compared 

with the existing works alike, the derived model shows its advantage in at least two as- 

pects. First, it incorporates the collective effect of multiple sinks on interstitial migration 

which is not fully taken into account in conventional works, and the accuracy of the con- 

tinuum description to the underlying mechanisms is thus improved substantially. Second, 

the derived model naturally formulates a sink saturation condition under which sinks no 

longer absorb point defects. The present work originates from developing a long-time pre- 

dictive model for a recent proposal for improving the radiation tolerance of materials by 

Chen et al. (2015), and the derived three-scale homogenisation approach can be naturally 

generalised to model the collective behaviour of other types of sink-defect interactions. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Radiation induced damage in the core structural materials that are made of crystalline materials leads to the creation of

microstructural/crystal defects ( Rosinski et al., 2001 ). Conceptually, these defects can be visualised as regions where there

is either a deficiency of lattice atoms (voids, vacancies, edge dislocations, vacancy type dislocation loops) or an excess of

lattice atoms (self interstitial atoms, interstitial type dislocation loops). All these defects lead to changes in the mechanical

properties of the material ( Konings et al., 2015; Rosinski et al., 2001 ). For example, radiation induced swelling (by vacancies

and voids) causes dimensional distortion and embrittlement, and is a life-limiting issue for structural materials in nuclear
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power reactors. Austenitic steels were used in fast reactors but could not reliably serve beyond 150 d.p.a. (displacement

per atom) ( Gelles, 1984 ). Ferritic and ferritic-martensitic (FM) steels have been found to swell much less than austentitic

steels ( Pasebani, 2014 ). Nano-structuring of both austenitic and FM steels appears to be a promising avenue for further

improvement of swelling resistance because of high density of interfaces, providing such structures are stable under ion

irradiation ( Little and Stow, 1979 ). 

Interfaces (interphase boundaries and grain boundaries) have been demonstrated to be ideal sinks that can absorb ra-

diation induced defects and a platform that can accelerate annihilation of radiation induced interstitials and vacancies

( Beyerlein et al., 2015 ). Interfaces between the metal matrix and nanoscale oxides in oxide dispersion strengthened (ODS)

steels systems prove to benefit swelling resistance and creep resistance ( Ginley and Kahen, 2012 ). In metallic nanolami-

nates, interfaces including twist grain boundary in Au ( Di et al., 2011 ), twin boundary in Cu ( Chen et al., 2015; Li et al.,

2013a, 2013b ), and interphase interfaces in Cu/Nb ( Bringa et al., 2012; Demkowicz et al., 2008; Han et al., 2012; Misra

et al., 2007 ), Cu/V ( Fu et al., 2013 ), Fe/W ( Zhang et al., 2012 ) etc., have shown strong defect sink strength and the ability

to suppress helium bubble formation. Molecular dynamics (MD) simulations reveal that the sink strength is proportional

to the amount of free volume created by interfaces ( Bai et al., 2010; Chen et al., 2016; Shao et al., 2015, 2013 ). Recently, a

treatment by deliberately introducing nanovoids on the grain boundaries (GBs) of nanotwinned metals is found effective in

regard to extending the lifetime of irradiated materials ( Chen et al., 2015 ). The idea behind can be briefed as follows. Under

irradiation, pairs of interstitials and vacancies are generated, and interstitial atoms diffuse faster into grain boundaries. In

the presence of interface dislocation networks that are implemented on both coherent/semicoherent twin boundaries, the

interstitial atoms arriving at the GBs are quickly directed into nanovoids, which delays the formation interstitial loops in-

side grains. With regard to such a treatment that has proved to work experimentally, a naturally-arising question is, how

to choose (within a manufacturable range) the nanoscopic design parameters (e.g. nanovoid radius, nanovoid spacing etc.),

so as to maintain the interstitial absorption rate by nanovoids at a high level for a given period. Here the term GB intersti-

tial is used to denote the interstitial atoms migrating in the vicinity of GBs. Trying to answer this question with molecular

dynamical or ab -initial calculations is almost computationally intractable when the observation period spans for seconds or

longer. In fact, even at a coarser-scale where GB interstitial concentration is the quantity of interest, the resulting computa-

tional intensity is still too high to afford, mainly due to the following two reasons. First, in order to resolve nanovoids, the

evolution equation for GB interstitial concentration has to be discretised with nanoscale mesh grids. Second, the problem is

actually of free-boundary type as the nanovoid sizes keep shrinking. Therefore, we still highly desire a model to formulate

the aforementioned GB interstitial - nanovoid dynamics, and the model should possess a good trade-off between resolution

and efficiency. To be more specific, on one hand, the model can be used for predicting the long-time behaviour of GB in-

terstitial concentration, while on the other hand, all important nanoscopic parameters and mechanisms should be properly

retained in the predictive model. One effective way to reconcile this dilemma is to homogenise the underlying nanoscopic

mechanisms so as to derive a model where nanovoids are treated as a sink continuum to GB interstitial atoms. 

The key to the derivation of such a continuum model is to develop a scheme which effectively “upscales” the consider-

ably large GB interstitial concentration gradient in the vicinity of the densely distributed nanovoids. The most widely-used

approach for upscaling nanoscale interactions between point defects (e.g. vacancies and interstitials) and sinks (e.g. dislo-

cations, voids etc.) follows the pioneering works by Mansur, Yoo and other contemporary researchers (e.g. Olander, 1976;

Yoo and Mansur, 1976; Mansur and Yoo, 1978; Mansur, 1978 ). Although the (two-dimensional) problem studied here dis-

plays a strong similarity with the mechanism of vacancy diffusion among dislocation “forests”, that has been investigated by

Mansur and other researchers, there are essential differences lying between the presented work and the conventional ones

(such as Mansur and coworkers’), and they are summarised in two aspects as follows. Firstly, the conventional models are

established based on a (microscopic) situation where the interstitial diffusion around isolated sinks is considered. In this sce-

nario, the effect of neighbouring sinks on the migration of point defects gets fully neglected. From an asymptotic viewpoint,

the conventional treatment provides a leading-order approximation to the underlying mechanism, and the approximation

is supposed to be sufficiently accurate provided that the ratio of inter-sink spacing to sink size is large. However, such an

approximation is not always accurate. It will be shown in Section 5.1 that the omission of higher-order terms amounts to a

deviation of 30%, even when the sink spacing-to-size ratio reaches as large as 100. The second issue that limits the conven-

tional models being used for the present study is that they do not fully take into account the role played by the inert gas

in bubbles. It is widely agreed that the migration of point defects deviates from pure diffusion given a hydrostatic pressure

gradient in materials. Due to the presence of inert gas, a hydrostatic pressure gradient is generated in the neighbourhood

of a nanovoid, which counters the “diffusive force”. As a result, sinks become “saturated” and shade themselves from GB

interstitial migration. A proper formulation of the conditions under which sinks get saturated is important for designing

relevant radiation resistant materials. However, such saturation states are not a natural outcome of the conventional models

where the gas pressure is simply included to vary the equilibrium concentration of point defects on sink surfaces, while

its effect on the distribution of the hydrostatic pressure field surrounding nanovoids is still ignored. Therefore, a continuum

model that properly summarises the underlying mechanism governing the GB interstitial-nanovoid interaction is still highly

desired. 

For this purpose, a three-scale homogenisation approach is proposed in this article, and the method can be envisaged

as a revamped version of the traditional multiscale treatment (e.g. see Pavliotis and Stuart, 2008 ), where two distinguished

length scales are concerned. If the traditional two-scale treatment is adopted to homogenise the above-mentioned nanovoid

problem, the fast scale would likely be chosen as the length scale associated with nanovoid spacing, while the slow scale
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Table 1 

Three cases studied in this paper. 

Case I Case II Case III 

Interstitial type Self-interstitial Self-interstitial Inert gas 

Elements in voids Vacant Inert gas Inert gas 

Governing equations (5) –(12) (5) –(12) (5), (6), (13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

would be associated with the size of structural materials. As a result, the information about individual nanovoids, such

as their size, gets smeared out in the two-scale homogenisation formulation. To overcome this difficulty, an extra length

scale associated with nanovoid size is introduced. With use of matched asymptotic techniques, all important (nanoscale)

parameters and mechanisms are properly maintained in the homogenised model. 

The present work is expected to provide an initial (and also relatively successful) attempt towards the integration of

nanoscale models to a timescale that is useful for engineering applications. With the proposed homogenised formulation,

the effect of nanoscale design on the long-time behaviour of GB interstitial concentration can be quantitatively studied. It is

worth noting that the derived formulation effectively covers the following three different types of interstitial dynamics on

grain boundaries. In the first case, nanovoids are vacant and GB interstitial atoms are of self-interstitial type. In the second

case, nanovoids become bubbles filled with inert gas ( Di et al., 2011 ). In the third case, GB interstitials are helium solute

atoms. In the two latter cases, the inert gas in bubbles generates an extra hydrostatic pressure field to the system, which

resists further GB interstitial inflow towards nanovoids. With the derived homogenised model, a condition governing the

onset of sink saturation to GB interstitial atoms is derived. We remark that the focus of the present work is to demonstrate

the effectiveness of the three-scale homogenisation approach, and to apply it to the investigation of the long-time behaviour

of GB interstitial concentration in the presence of nanovoids at interface. Hence the dynamic processes regarding generation,

annihilation, and diffusion of radiation induced defects inside grains are simply integrated into a source term and will

be systematically formulated in forthcoming works. It is also noted that given the similarities between the mechanism

investigated here and the vacancy-dislocation mechanism widely studied elsewhere (e.g. Mordehai et al., 2008; Keralavarma

et al., 2012; Ayas et al., 2014; Gu et al., 2015; Huang and Li, 2015; Gu et al., 2017; Rovelli et al., 2017 ), the proposed three-

scale homogenisation scheme can be generalised to improve the existing continuum model of dislocation incorporating

vacancy diffusion that is deduced using the conventional approach for upscaling defect-sink interactions ( Geers et al., 2014 ).

The rest of the article is arranged as follows. After setting up the problem at the nanoscale level in Section 2 , the three-

scale homogenisation approach is introduced so as to derive the coarse-grained formulation in Section 3 . In Section 4 , the

model is further simplified to consist of a system of ordinary differentialequations (ODEs), and simulation results based on

the derived ODEs are compared with experimental data by Chen et al. (2015) . In Section 5 , discussion will be conducted in

the following three aspects: comparisons of the sink capture efficiency formulated here with that in conventional works, the

derivation of a sink saturation condition and searching for an optimal solution for nanovoid implementation at interfaces.

The article concludes in Section 6 . 

2. Dynamics on nanoscales 

In the present study, three cases will be studied as summarised in Table 1 : 

• Case I. GB interstitial atoms are of self-interstitial type, and nanovoids are vacant. 

• Case II. GB interstitial atoms are of self-interstitial type, but nanovoids become bubbles filled with inert gas, e.g. helium.

• Case III. Both GB interstitial atoms and the elements inside nanovoids are inert gas atoms. 

These three types of problems can be studied under a unified set-up as shown schematically in Fig. 1 . The interface, say, a

grain boundary, is set to be the x − y plane ( z = 0 ) and is denoted by �. On the grain boundary, nanovoids are distributed

with a density of ρ( x, y ) (of unit m 

−2 ). Here we assume ρ takes a smooth profile. This means that the spacing between

two neighbouring nanovoids can be approximated by 1 / 
√ 

ρ(x, y ) . In the present study, all nanovoids are assumed to take

spherical shapes, and the (three-dimensional) region occupied by the k th nanovoid is denoted by �k 
nv : 

�k 
nv = { (x, y, z) | 

√ 

(x − x k ) 2 + (y − y k ) 2 + z 2 ≤ r k } , (1)

where ( x k , y k , 0) is the coordinate of the k th nanovoid center and r k denotes the k th nanovoid radius. Here we further

assume that r k also varies smoothly in space, i.e. one can find a smooth function r nv ( x, y ), such that 

r k = r nv (x k , y k ) . (2)

Here the slow-varying assumption on r nv etc. is reasonable, because the experimentally implemented nanovoids usually

locate at the intersections of the (often regularly distributed) interface dislocation networks on coherent/semicoherent twin

boundaries ( Shao et al., 2013 ). 

In case II and III, nanovoids become bubbles filled with helium gas. If the number of helium atoms within the k th bubble

is denoted by N 

k 
He 

, we introduce another smooth field variable N He , such that 

N 

k 
He = N He (x k , y k ) . (3)
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Fig. 1. A family of nanovoids of density ρ (of unit m 

−2 ) is distributed on a flat grain boundary of size L and denoted by �. The nanovoids are sinks to 

GB interstitial atoms deposited from grain interiors. All nanovoids are assumed to take spherical shapes with the k th nanovoid centered at ( x k , y k ) and of 

radius r k . Three distinguished length scales are concerned, and they are characterised by r nv , 1 / 
√ 

ρ and L , respectively. The length-scale parameters satisfy 

the hierarchic relation given by Eq. (14) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let c ( x, y ) denote the average GB interstitial concentration in a vicinity of a GB point ( x, y ). The GB interstitial flux is then

expressed by Hirth and Lothe (1982) 

J = −D i ∇c − D i c�V i 

k B T 
∇p, (4) 

where D i denotes the diffusivity coefficient of GB interstitial atoms; k B is the Boltzmann constant; T is temperature; �V i 

represents the dilatation volume of generating a GB interstitial site; p is the hydrostatic pressure. The first term of Eq.

(4) arises from first Fick’s law, which accounts for GB interstitial diffusion. The second term of Eq. (4) formulates the in-

teraction between GB interstitial atoms and the elastic stress field existing in materials. It should be noted that given the

interface dislocation networks on GBs which act as fast channels for GB interstitial flux towards nanovoids, the actual GB

interstitial diffusion is (microscopically) anisotropic. However, for simplicity, we still use an isotropically defined D i , which

properly integrates the fast-channelling effect caused by interface dislocations on GBs. 

With Eq. (4) , the evolution of fractional GB interstitial concentration is formulated by 

∂c 

∂t 
= −∇ · J + s = D i ∇ ·

(
c + 

c�V i 

k B T 
∇p 

)
+ s, (5) 

on � outside nanovoids, where s (of unit s −1 ) is a source term accounting for interstitial deposition from grain interiors. On

nanovoid boundaries, we let 

c | ∂�k ∩ � = 0 . (6) 

For both case I and II, Eq. (6) means that a self-interstitial atom gets crystalised on nanovoid surfaces, while for case III it

means that the solute helium atoms take their fluidic phase as they enter the bubbles. It is noted that, for case I or II, the

crystalline formation energy of atoms on nanovoid surface can also be taken into account, but the boundary condition needs

to be re-written in that scenario. To derive a closed system, we also need to determine the expressions for the hydrostatic

pressure p and the source term s . 

The hydrostatic pressure field within materials is related to the internal elastic stress field σ by its first stress invariant

( Balluffi et al., 2005 ): 

p = −σ11 + σ22 + σ33 

3 

. (7) 

It is shown in Appendix A that the hydrostatic pressure field should satisfy the three-dimensional Laplacian equation: 

∂ 2 p 

∂x 2 
+ 

∂ 2 p 

∂y 2 
+ 

∂ 2 p 

∂z 2 
= 0 (8) 

for linearly elastic and isotropic materials. In order to fully determine p in a specimen containing nanovoids, the boundary

conditions on nanovoid surfaces are also needed. The pressure exerted on the material in the vicinity of a nanovoid, which

is denoted by p 0 , is given by 

p 0 = p | ∂�k 
nv 

= p g − 2 γ

r nv 
, (9) 

where p g is the pressure due to the inert gas in bubbles and γ is the nanovoid surface energy density. It is remarked that

similar as the definition of r nv in Eq. (2) , both p 0 and p g in Eq. (9) are defined to be smoothly-varying field variables in

space, and their evaluations at point ( x , y ) return the values of the corresponding physical quantities associated with the
k k 
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k th bubble. The gas pressure p g should be a function of nanovoid radius r nv and the number of helium atoms within N He .

For example, p g can be expressed by using the ideal gas formula: 

p g = 

3 k B T N He 

4 π(r nv ) 3 
, (10)

when N He falls below a certain value. 

In theory, the internal hydrostatic pressure field p can be computed by (numerically) solving Eq. (8) along with boundary

condition (9) (and the macroscopic loading conditions). However, it will be seen later that, direct computation for p is too

time-consuming. Hence extra treatment is needed so as to make resulting simulations fall in a computationally tractable

range. 

The source term s appearing in Eq. (5) should equal the rate of the total number of interstitial atoms deposited from grain

interiors, multiplied by the area occupied by a single interstitial site S i and divided by the total area of the grain boundaries.

In theory, the interstitial deposition rate on grain boundaries should depend on the behaviour of interstitials and vacancies

inside grains. Here for better addressing the main point of the article, we assume that the interstitial deposition rate from

grain interiors is a constant, and all grains take an identical cuboid shape. Hence when the defects are of self-interstitial

type (case I and II), the interstitial deposition rate from grain interiors is given by ˙ d N 0 P i l 
3 
0 

( Was., 2017 ), where ˙ d is the d.p.a.

rate; N 0 is the number of atoms per volume in perfect matrix crystals; P i is the probability of a displaced atom that finally

arrives at the grain boundaries. Since each cuboid facet is shared by two grains, the surface area assigned to each grain is

actually 3 l 2 
0 

. Therefore, 

s = 

˙ d N 0 P i S i l 0 
3 

. (11)

The expression for s in case III can be obtained through comparing with experimental data or small-scale simulation results,

and this will not be discussed in full details here. 

Now we write down the evolution equations for nanovoid size r k and the number of helium atoms in the k th nanovoid

N 

k 
He 

. For case I and II, as nanovoids keep absorbing GB self-interstitial atoms, their sizes shrink accordingly. The shrinkage

in nanovoid volume divided by the volume occupied a single atom (of the structural materials) should equal the number of

incoming GB self-interstitial atoms, i.e., 

d 

d t 

4 π(r k ) 
3 

3 

= 

1 

N 0 S i 

∫ 
∂�k 

nv 

J · n d s, (12)

where N 0 is recalled to be the atom number per volume in perfect lattice and S i is recalled to represent the area of a

GB self-interstitial atom occupies on the grain boundary �. For case III, nanovoid sizes stay unchanged but the number of

helium atoms within bubbles increases, i.e. 

d N 

k 
He 

d t 
= 

1 

S i 

∫ 
∂�k 

nv 

J · n d s. (13)

The governing equations for the three cases are summarised in Table 1 . 

In principle, one can evolve the above-listed equations so as to predict the long-time behaviour of the GB interstitial

concentration in irradiated materials. Practically, however, direct simulations of the aforementioned equation system are

difficult. This is because there are actually three distinguished length scales involved, which is respectively characterised

by the nanovoid radius r nv , nanovoid spacing 1 / 
√ 

ρ and grain size L . In practice, irradiated material GB should not be too

“hollow” and this suggests 
√ 

ρr nv � 1 . Moreover, the number of nanovoids is often very large and this gives rise to 
√ 

ρL � 1 .

Hence a hierarchic relation is established as follows 

r nv � 1 √ 

ρ
� L. (14)

This means that the numerical discretisation of Eqs. (5) –(13) has to be fine enough in order to resolve nanovoids. If the

simulation is conducted on a length scale that is far larger than nanoscales, the resulting computational cost is too huge to

afford. Moreover, since nanovoid boundaries may also evolve in time, the problem considered is actually of free-boundary

type, which further brings up the computational cost. Therefore, a homogenised description of the presented evolution

system is still highly desired. On one hand, it can be used for predicting the long-time behaviour of GB interstitial concen-

tration. On the other hand, important nanoscopic information has to be retained at the coarse-grained level. 

3. Homogenisation 

3.1. Scale separation 

The homogenisation tactics adopted in this work can be summarised in Fig. 2 . Nanovoids display various profiles when

measured on different length scales. On nanoscales (characterised by r nv ), isolated nanovoids are fully resolved. When

viewed on a scale of tens of nanometers (characterised by 1 / 
√ 

ρ), nanovoids are so small that they are considered as locally
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Fig. 2. The three regimes are characterised by nanovoid radius r nv , nanovoid spacing 1 / 
√ 

ρ and material size L , respectively. After non-dimensionalisation 

(by following Eq. (18) ), the regime measured in unit of δε is named as the inner region, where isolated nanovoids are fully resolved. When zoomed out 

to the intermediate region measured in unit of ε, nanovoids are so small that they can be treated as locally periodic point sinks to GB interstitial atoms. 

When zoomed out even further to the outer region measured in unit of 1, nanovoids look like a sink continuum to interstitials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

periodic point sinks to interstitials. If zoomed out even further to microscales or above (characterised by L ), the nanovoid

family can be treated as a continuous distribution of interstitial sinks. In this work, the behaviour of solutions to the model

listed in Section 2 will firstly be analysed on the three length scales individually. Then the information collected on var-

ious scales is connected by using the matched asymptotic techniques. For simplicity, we will first look for the governing

homogenised equations near the origin. The global representation of the homogenised system is then obtained by chang-

ing the inputs of all field variables from the origin to the points of interest. We remark that the idea behind the derived

three-scale homogenisation scheme originates from the work by Chapman et al. (2015) , where the continuum limit of the

shielding effect by Faraday cages is studied. 

3.2. Expression for hydrostatic pressure 

Before carrying out multiscale analysis, we first look for an expression for hydrostatic pressure p , which should satisfy Eq.

(8) with boundary condition (9) . Noted that if viewed on the length scale associated with L, p displays a highly-oscillatory

profile because of the densely distributed nanovoids. Here we refer to the analytical results by Chapman et al. (2016) to

assume that p (near the origin) can be decomposed into a mean-field pressure field p m 

and a (fast-varying) locally periodic

pressure field p s : 

p = p m 

+ p s . (15) 

Here p m 

measures the hydrostatic pressure field (near the origin) due to the external load and faraway nanovoids, and it is

smoothly varying. The fast oscillatory feature originally displayed by the hydrostatic pressure field is then captured by the

short-range pressure field p s , which is a periodic function of period 1 / 
√ 

ρ . Based on the aforementioned decomposition, p

near the origin can be approximated within a small square cell of size 1 / 
√ 

ρ by a periodic p s added by a locally constant

p m 

(due to its smoothly-varying feature). 

For the expression for p s , one only needs to look for the solution to the three-dimensional Laplacian Eq. (8) in a periodic

square with a nanovoid centered at the origin. On nanovoid surface, we let 

p s | ∂�nv 
= p 0 − p m 

, (16) 

where p 0 is given by Eq. (9) . The mean-field hydrostatic pressure field p m 

can be computed with a global finite element

scheme. Since the inclusion of p m 

is a trivial task, we let p m 

= 0 for further analysis. Hence Eq. (16) becomes p s | ∂�nv 
= p 0 .

Although the full expression for p s may not be available, as suggested by a detailed calculation in Appendix B , p s should

look like 

p s = 

p 0 r nv √ 

x 2 + y 2 
· g ( 

√ 

ρx, 
√ 

ρy ) , (17) 

where g ( s 1 , s 2 ) is a non-dimensional and bounded function. It is also seen from Appendix B that p s ∼ p 0 r nv √ 

x 2 + y 2 
as 

√ 

x 2 + y 2 →
0 . The aforementioned information for p s is sufficient for further multiscale calculations. 

3.3. Multiscale analysis 

3.3.1. Nondimensionalisation 

To facilitate further multiscale analysis, we non-dimensionalise by 

x̄ = 

x 

L 
, ȳ = 

y 

L 
, t̄ = t · D i 

L 2 
, s̄ = s · L 2 

D 

, p̄ s = 

p s 

p 
, (18) 
i 0 
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where a bar is added to a variable to denote its non-dimensional counterpart. Note that there is no need to non-

dimensionalise the fractional concentration c . 

The non-dimensional version of Eq. (5) is 

∂c 

∂ ̄t 
− ∇̄ ·

(∇̄ c + βc ̄∇ ̄p s 
)

= s̄ , (19)

where ∇̄ denotes taking gradient with respect to ( ̄x , ̄y ) and the non-dimensional parameter β satisfies 

β = 

p 0 �V i 

k B T 
. (20)

For better identifying the three regimes shown in Fig. 2 , two small parameters are introduced: 

δ = 

√ 

ρr nv � 1 , ε = 

1 √ 

ρL 
� 1 . (21)

In the non-dimensional space, the three regimes characterised by r nv , 1 / 
√ 

ρ and L are corresponded to an inner region

measured in unit of δε, an intermediate region measured in ε and an outer region measured in 1, respectively, as shown in

Fig. 2 . 

Noted that the hydrostatic pressure field is expressed by 

p̄ s = 

δε√ 

x̄ 2 + ȳ 2 
· g 

(
x̄ 

ε
, 

ȳ 

ε

)
(22)

in the non-dimensional space. 

Now we will take turn to analyse Eq. (19) in the aforementioned three regimes shown. Then the homogenised equation

is derived by matching the information across different regimes. 

3.3.2. Inner region 

In the inner region, we rescale by 

ξ = 

x̄ 

δε
, η = 

ȳ 

δε
. (23)

The GB interstitial concentration can thus be represented by c := c in ( ξ , η). It is noted that c in should also depend on the

original slowly-varying variables ( ̄x , ̄y ) , if higher-order effects are also taken into account. However, it is posteriorly found

that investigating the leading-order effect of c in the inner region is sufficient for obtaining the homogenised formulation.

In the inner region, Eq. (22) reads 

p̄ s = 

1 √ 

ξ 2 + η2 
· g(δ, δ) . (24)

Since lim (x,y ) → (0 , 0) g(x, y ) = 1 (due to Eq. (B.8) in Appendix B ), we obtain 

p̄ s ∼ 1 √ 

ξ 2 + η2 
(25)

to the leading order. 

Inserting Eq. (25) into (19) and replacing the spatial variables by ( ξ , η), we have 

∂c in 

∂ ̄t 
− 1 

δ2 ε2 
·
( 

˜ ∇ 

2 c in + β ˜ ∇ ·
( 

c in ̃  ∇ 

( 

1 √ 

ξ 2 + η2 

) ) ) 

= s̄ , (26)

where the differentiation chain rule is used and “ ˜ ∇ ” represents taking gradient with respect to ( ξ , η). We remark that there

is no need to rescale time, because the evolution process taking place on a timescale of t̄ /ε or above does not appear in the

final homogenised formulation. Taking the leading-order term of Eq. (26) gives the governing equation for c in : 

˜ ∇ 

2 c in + β ˜ ∇ ·
( 

c in ̃  ∇ 

( 

1 √ 

ξ 2 + η2 

) ) 

= 0 . (27)

In the inner region, the boundary condition (6) is re-written by 

c in | �=1 = 0 , (28)

where � = 

√ 

ξ 2 + η2 . One way to solve Eq. (27) along with condition (28) , is to express the solution as a series expansion

in terms of β . Thus one write 

c in = A · ( log � + h (�;β) ) , (29)
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where A is a constant to be determined. The expansion form of h ( ϱ; β) is detailed in Appendix C . It is noted that only the

information about c in as ϱ → ∞ is of use when being matched with the solution from the intermediate region. Also as

detailed in Appendix C , the behaviour of c in at infinity is approximately given by 

c in ∼ A ·
(

log 
√ 

ξ 2 + η2 + 

β

4 − β

)
, (30) 

as ϱ → ∞ . 

3.3.3. Intermediate region 

When zoomed out from the inner region, nanovoids degenerate to a family of locally periodic point sinks to GB inter-

stitials. The local periodicity is due to the fast-varying feature of nanovoids (when viewed on a length scale of O(1) in the

non-dimensional space). In this scenario, the effect of nanovoids to the GB interstitial concentration (near the origin) can be

incorporated into Eq. (5) by the sum of a family of periodically centered Dirac- δ functions: 

∂c 

∂ ̄t 
− ∇̄ ·

(
c + βc ̄∇ ̄p s 

)
= s̄ −

∑ 

i, j∈ Z 
B 1 δd ( ̄x − iε) δd ( ̄y − jε) , (31) 

where a subscript “d” is added to a Dirac function so as to distinguish from the small parameter δ defined in Eq. (21) ; B 1 is

a constant (associated with the origin) to be determined. 

If still measured in terms of ( ̄x , ̄y ) , the GB interstitial concentration c behaves highly oscillatory. To cope with such a

high oscillation, we follow the general multiple-scale analysis procedure to introduce a pair of intermediate-scale variables

(X, Y ) = 

(
x̄ 

ε
, 

ȳ 

ε

)
. (32) 

Then the GB interstitial concentration can be approximated by a function c m 

( ̄x , ̄y ; X, Y ) , which is assumed periodic over X

and Y with period 1. By doing this, the fast-varying feature of c is captured in terms of X and Y , while the slow-varying

feature (on the length scale associated with O(1) ) is still described in terms of x̄ and ȳ . Thus variations taking place on

different length scales get separated with use of the chain rule: 

∂ 

∂ ̄x 
= 

∂ 

∂ ̄x 
+ 

1 

ε

∂ 

∂X 

, 
∂ 

∂ ̄y 
= 

∂ 

∂ ̄y 
+ 

1 

ε

∂ 

∂Y 
. (33) 

Here the book by Pavliotis and Stuart (2008) is referred to if one is interested in getting more knowledge about the tradi-

tional multiscale techniques. 

The hydrostatic pressure p̄ s given by Eq. (22) now becomes 

p̄ s = δ · g(X, Y ) √ 

X 

2 + Y 2 
. (34) 

Eq. (34) suggests that the effect due to p̄ s away from (X, Y ) = (0 , 0) ( ∼ O(δ) ) is weak compared to GB interstitial diffusion

( ∼ O(1) ). Near (X, Y ) = (0 , 0) , the singularities of p̄ s has been taken into account by the undetermined coefficient B 1 of the

family of Dirac- δ functions in Eq. (31) . Therefore, if only the leading order effect is of interest, the hydrostatic pressure term

p̄ s can be neglected on the intermediate scale. Thus under the multiple-scale framework, Eq. (31) is written by 

∂c m 

∂ ̄t 
− ∇̄ 

2 c m 

− 1 

ε2 

(
∂ 2 c m 

∂X 

2 
+ 

∂ 2 c m 

∂Y 2 

)
= s̄ − B 1 

ε2 
· δ(X ) δ(Y ) , (35) 

with (X, Y ) ∈ �m 

= [ −1 / 2 , 1 / 2] × [ −1 / 2 , 1 / 2] . 

Keeping the leading-order terms of Eq. (35) gives the governing equation in the intermediate region: 

∂ 2 c m 

∂X 

2 
+ 

∂ 2 c m 

∂Y 2 
= B 1 δd (X ) δd (Y ) (36) 

with c m 

periodic in �m 

. The general solution to Eq. (36) can be expressed by 

c m 

= 

B 1 

2 π
·
(

log 
√ 

X 

2 + Y 2 + χ(X, Y ) 
)

+ B 2 , (37) 

where B 2 is another coefficient to be determined and the function χ ( X, Y ) is the solution to a cell problem defined by (
∂ 2 

∂X 

2 
+ 

∂ 2 

∂Y 2 

)
χ(X, Y ) = 0 , (38) 

with 

∂χ

∂X 

∣∣∣∣
X= ± 1 

2 

= ∓ 2 

1 + 4 Y 2 
, 

∂χ

∂Y 

∣∣∣∣
Y = ± 1 

2 

= ∓ 2 

4 X 

2 + 1 

. (39) 
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In order to uniquely determine χ , we let 

lim √ 

X 2 + Y 2 → 0 

χ(X, Y ) = 0 . (40)

Although the explicit form of χ is not available, it will be shown later that the numerical solution to Eqs. (38) –(40) is

sufficient for further analysis. 

3.3.4. Outer region 

When zoomed out from the intermediate scale, individual nanovoids will no longer be resolved. What is seen is a sink

continuum to GB interstitial atoms. Actually, the macroscopic GB interstitial concentration should equal the intermediate

solution c m 

averaged over its associated periodic cell �m 

: 

c( ̄x , ȳ ) = 

1 

| �m 

| 
∫ 
�m 

c m 

( ̄x , ȳ ; X,Y )d X d Y. (41)

Therefore, by integrating Eq. (35) over �m 

and using (41) , the homogenised equation for c is obtained: 

∂c 

∂ ̄t 
− ∇̄ 

2 c = s̄ − B 1 

ε2 
. (42)

3.3.5. Matching between solutions from various regimes 

In order to fully determine the homogenised equation for c , one needs to eliminate B 1 in Eq. (42) . This can be achieved

by inserting Eq. (37) into (41) : 

c( ̄x , ȳ ) = 

B 1 

2 π | �m 

| ·
(∫ 

�m 

log 
√ 

X 

2 + Y 2 d X d Y + 

∫ 
�m 

χ(X, Y )d X d Y 

)
+ B 2 . (43)

Based on Eqs. (38) –(40) , it can be numerically calculated that ∫ 
�m 

χ(X, Y )d X d Y ≈ −0 . 2515 . (44)

Combining this with the fact that 
∫ 
�m 

log 
√ 

X 2 + Y 2 d Xd Y ≈ −1 . 0612 and | �m 

| = 1 , we obtain 

c( ̄x , ȳ ) = −k 0 B 1 

2 π
+ B 2 , (45)

where k 0 ≈ 1.3127. Now another coefficient B 2 is introduced in Eq. (45) . To determine it, asymptotic matching between the

inner and intermediate solutions is performed. The underlying idea is that the solution of the inner problem at infinity

should agree with the solution of the intermediate problem at the origin. 

The behaviour of c in as 
√ 

ξ 2 + η2 → ∞ has been given by Eq. (30) , and it can be re-written in terms of the intermediate

variable ( X, Y ) by 

c in ∼ A ·
(

log 
√ 

X 

2 + Y 2 − log δ + 

4 β

4 − β

)
, (46)

where (ξ , η) = (δX, δY ) is used. Eq. (46) is then matched with the behaviour of c m 

given by Eq. (37) as 
√ 

X 2 + Y 2 → 0 : 

c m 

∼ B 1 

2 π
· log 

√ 

X 

2 + Y 2 + B 2 , (47)

where Eq. (40) has been used. A comparison between Eqs. (46) and (47) suggests 

B 1 = 2 πA, B 2 = −A log δ. (48)

Inserting Eq. (48) into (45) gives 

B 1 = 

2 πc 

log 1 
δ

+ 

4 β
4 −β

− k 0 
(49)

Finally, replacing B 1 in Eq. (42) gives the homogenised equation for the GB interstitial concentration on grain boundaries in

the non-dimensional space: 

∂c 

∂ ̄t 
− ∇̄ 

2 c = s̄ − 2 π

ε2 
· c 

1 4 β
. (50)
log 
δ

+ 

4 −β
− k 0 
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3.4. Homogenised system 

Now we re-dimensionalise Eq. (50) and obtain 

∂c 

∂t 
− D i ∇ 

2 c = s − ρD i ω 0 · c, (51) 

where 

ω 0 � 

2 π

log 1 
r nv 

√ 

ρ + 

4 p 0 �V i 
4 k B T −p 0 �V i 

− k 0 
(52) 

and the expression of β by Eq. (20) is used to derive Eq. (52) . In theory, Eq. (51) holds near the origin. Actually, it is trivial to

generalise the method used in Section 3 to any spatial point ( x, y ). Thus Eq. (51) can be used as a homogenised description

of the GB interstitial motion throughout the whole region �. 

Then we derive the evolution equations for nanovoid radius r nv (in case I and II) and the helium number per bubble

N He (in case III). It is noted that the last term of Eq. (51) has the physical meaning of GB interstitial absorption rate (by

nanovoids) per area. Hence the GB interstitial absorption rate by a single nanovoid (near the point of interest, say, ( x, y ))

is calculated by the last term of Eq. (51) divided by ρS i , where S i is recalled to be the grain boundary area occupied by a

single GB interstitial atom. 

In case I and II, interstitial absorption results in a shrinkage in nanovoid volume: 

N 0 · ∂ 

∂t 

(
4 π

3 

r 3 nv 

)
= −D i ω 0 

S i 
· c, (53) 

where N 0 is recalled to be the number of atoms per volume of perfect crystals. Rearranging Eq. (53) gives the governing

equation for the nanovoid radius (near the spatial point ( x, y )): 

∂r nv 

∂t 
= − D i ω 0 

4 πN 0 S i 
· c 

r 2 nv 

. (54) 

In case III, GB interstitial absorption results in an increase in the number of helium atoms per bubble: 

∂N He 

∂t 
= 

D i ω 0 

S i 
· c. (55) 

The above system of partial differential equations (PDEs) is closed if an empirical formula relating p g to r nv and N He is

included. In the simulation results presented in this article, the ideal gas formula (given by Eq. (9) ) is employed to express

p g . 

Compared to the equation system listed in Section 2 , the coarse-grained PDE system obtained here can be numerically

solved with mesh grid on microscales or above, while useful nanoscopic information has been incorporated in ω 0 defined by

Eq. (52) . It is worth noting that during the derivation of the continuum model, the asymptotic behaviour of the underlying

mechanism is considered until O(1) . This is in contrast with the conventional works (e.g. Olander, 1976; Yoo and Mansur,

1976 ) where only the leading-order approximation (up to O( log δ) ) is employed. A more detailed comparison between the

present model and conventional ones will be made in Section 5.1 . 

4. A predictive model for system long-time behaviour 

4.1. Governing equations 

The efficiency of the homogenised formulation (in terms of computational time) can be further improved, if only the

system overall effect is concerned. In that scenario, we let all quantities be spatially homogeneous. Here the term “ho-

mogeneous” is employed in a macroscopic sense, i.e. all field quantities, such as nanovoid density and GB interstitial con- 

centration, are spatially invariant, while the microscopic heterogeneities induced by the presence of nanovoids have been

properly taken into account with use of the three-scale homogenisation scheme. Hence the presented model is essentially

different from some of the conventional homogeneous models where GB interstitial concentration gradients are completely

ignored. Now c measures the overall fractional GB interstitial concentration, and so on for r nv and N He . By letting all spatial

derivatives in Eq. (51) vanish, we have 

d c 

d t 
= s − ρD i ω 0 · c. (56) 

For simulations of either case I or II, Eq. (56) is coupled with 

d r nv 

d t 
= − D i ω 0 

4 πN 0 S i 
· c 

r 2 nv 

, (57) 

which is from Eq. (54) ; while for case III, Eq. (56) is coupled with 

d N He 

d t 
= 

D i ω 0 

S i 
· c, (58) 

which is from Eq. (55) . 
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lines. Both of the key phenomena addressed by Chen et al. (2015) are well captured by derived homogenised model: i) the rate of shrinkage is faster for 

small voids; ii) an accelerated collapse of nanovoids is widely observed, when void sizes fall below ∼ 3 nm (as marked out by grey color). In fact, these 

phenomena can be well rationalised by the derived model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this coarse-grained dynamical system, all important sub-continuum parameters and mechanisms are well retained.

Hence the ordinary differential equation system (56) –(58) can be employed to predict the long-time behaviour of GB inter-

stitial concentration under various irradiation conditions and nanoscopic design parameters. 

We remark that compared to the PDE system listed in Section 3.4 , the derived ODE system is more computationally

efficient at the expense of a loss in resolution. How to trade-off between resolution and efficiency should depend on the

problem of interest. For example, if the spatial distribution of nanovoids are far from being uniform, the PDE representation

should be used. In the present work, the ODE description is adopted for further analysis. 

4.2. Comparison with experimental data 

Now we refer to the in-situ experimental observation made by Chen et al. (2015) , where the evolution of nanovoid

sizes starting with different values is recorded as irradiation proceeds. The experimental data are shown by the discrete

dots in Fig. 3 , and they are compared with the simulation results based on the derived ODEs. Eqs. (56) and (57) are

used for computation with N He = 0 (case I), and other parameters are evaluated as follows: ρ = 10 −4 nm 

−2 , l 0 = 50 nm,

T = 500 K, ˙ d = 3 × 10 −3 d.p.a./s (all taken or estimated from Chen et al., 2015 ); N 0 = 62 . 5 /nm 

3 (by following conventions);

S 0 = 0 . 08 nm 

2 , �V i = 10 −3 nm 

3 (both estimated from Freund and Heinloth, 2002 ); γ = 41 . 2 eV/nm 

2 ( Wasserman and Ver-

maak, 1970 ); D i = 10 3 nm 

2 /s; P i = 0 . 03 . It should be noted that there seem no quantities from literature which display a

physical equivalence to the GB interstitial deposition probability P i and the (two-dimensional) diffusivity D i (which should

also integrate the fast-channelling effect in GB interstitial motion caused by interface dislocation networks). Their values

have to be determined through a comparison with experimental data. Albeit the inevitable arbitrariness lying in the deter-

mination of parameter values, the derived homogenised model still manages to capture the two key phenomena that are

addressed by Chen et al. (2015) : i) the rate of shrinkage is faster for small voids; ii) an accelerated collapse of nanovoids is

widely observed, when void sizes fall below ∼ 3 nm (as marked out by grey color in Fig. 3 ). In fact, these two phenomena

can be well rationalised by use of the derived model. According to Eq. (57) , the rate of nanovoid shrinkage satisfies 

d r nv 

d t 
∝ − 1 

r 2 nv 

(
log 1 √ 

ρr nv 
− 4 γ�V i 

2 r nv k B T + γ�V i 
− k 0 

) , (59)

where the expression for ω 0 in Eq. (52) has been used. It is easily found that the right side of Eq. (59) is a (negatively)

decreasing function of r nv . Thus the rate of shrinkage is smaller for larger voids. It is also observed from Eq. (59) that

d r nv / d t → −∞ as r nv → 0, and this explains the onset of the collapse of tiny voids. 

We remark that the experimental measurement starts when the irradiation dose reaches ∼0.11 d.p.a. (as marked by

the left-side vertical dash line in Fig. 3 ). This may be one reason for the quantitative difference between experimental and

simulation results (for large voids). Due to the pre-existing irradiation, the actual initial GB interstitial concentration may not

be zero, while our simulations begin with c = 0 . Besides, the experimental measurement stops at ∼0.26 d.p.a. (as marked

by the right-side vertical dash line in Fig. 3 ), which indicates the experimental irradiation runs for about 100 s. In contrast,

the simulations based on the derived ODEs can literally last for any irradiation period with tiny computational cost. 
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Fig. 4. Evolution of GB interstitial concentration and nanovoid sizes for case I. (a) All parameter values are taken exactly the same as in Section 4.2 . 

The evolution can be divided into three stages. In the first stage, GB interstitial concentration grows at a rate that is almost the same as interstitial 

deposition from grain interiors. In the second stage, GB interstitial concentration increases at a much lower speed than the deposition rate, as interstitial 

sinks become active. In the last stage, nanovoids are fully filled. As a result, c rises again at a same rate as s . (b)–(d) Simulations are also conducted with 

different combinations of the two indeterminate parameters D i and s (by means of changing P i ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Numerical examples 

More numerical examples will be presented so as to provide the readers a clearer overview of the system long-time be-

haviour predicted by using the derived ODE model. For simulation results presented in the rest of the article, the parameter

values are chosen the same as that used in Section 4.2 unless specified. 

First we consider case I where nanovoids are vacant ( N He = 0 ). In Fig. 4 (a), the evolution of GB interstitial concentration

and nanovoid size is shown where the parameter values are chosen exactly the same as that used for generating Fig. 3 .

It is seen that under irradiation, the GB interstitial evolution can be roughly divided into three stages. In the first stage,

GB interstitial concentration increases at a rate almost the same as the rate of interstitial deposition from grain interiors.

This is because at a low concentration, few GB interstitial atoms are available for nanovoids to absorb. As more interstitial

atoms arrive at GBs because of irradiation, GB interstitial absorption becomes comparable to its deposition. Consequently, GB

interstitial concentration rises at an almost constant speed that is far less than its deposition rate s , and the sinks become

active in this stage. When nanovoids are fully filled by incoming GB interstitial atoms ( r nv = 0 ), c increases again at the

same speed as s . 

Given the uncertainties in the choice of diffusivity D i and the interstitial source s (by means of P 0 ) as discussed in

Section 4.2 , we also simulate the system behaviour with different combinations of D i and s , as shown in Fig. 4 (b)–(d). As

from Fig. 4 (b), an increase in D i brings down GB interstitial concentration before the onset of the third stage. Physically,

this means an interstitial atom arriving at GB has a high probability of being transferred to nanovoids by interface disloca-

tion networks that correspond to a higher overall diffusivity. Another interesting observation is that the evolution profiles
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seen. The main difference between case I and II is that interstitial sinks get saturated at a finite radius when they are filled with inert gas. In the simulation 

for case II, N He = 2 × 10 5 . 
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Fig. 6. Evolution of the concentration of helium solutes on GBs in case III. (a) When there is no external source of helium atoms depositing to GBs, the 

helium solutes initially resting on GBs are gradually absorbed by the sinks. (b) When there is helium atoms constantly depositing to the GB (e.g. s = 0 . 01 /s), 

the GB solute concentration drops initially, but the trend is reversed as more helium atoms arrive at the GB. The simulation for both cases start with an 

initial GB solute concentration c = 0 . 2 , vacant nanovoids ( N He = 0 ) and r nv = 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

depicted in Fig. 4 (c) and (d) look identical, while the difference is the time span. This can be rationalised by dividing both

sides of Eq. (56) by s : 

1 

s 

d c 

d t 
= 1 − ρD i ω 0 

s 
· c. (60)

When the time is rescaled with the interstitial deposition rate s , the evolution equation remains the same if the non-

dimensional parameter ρD i ω 0 / s is fixed. 

For case II where nanovoids become helium gas bubbles, the system behaviour is depicted in Fig. 5 . Here the number

of helium atoms per bubble is set to be N He = 2 × 10 5 . Similar as the previous example, the evolution process can also be

divided into three stages. The main difference between the two cases is that sinks become saturated at a finite radius r ∗nv in

case II. In another word, the inert gas in bubbles “shades” them from GB interstitial migration. This arises from the fact that

the “diffusive force” is balanced by the hydrostatic pressure gradient induced by helium gas in bubbles. Detailed discussion

on how the presence of helium atoms in bubbles affects the long-time behaviour of GB interstitial concentration is made in

Section 5.2 . 

For Case III where GB interstitials become helium solute atoms, we will consider the cases with and without exter-

nal source of helium atoms. The simulations for both cases start with an initial GB solute concentration c = 0 . 2 , vacant

nanovoids ( N He = 0 ) and r nv = 5 . When there is no external source of helium atoms arriving at GBs, the helium solute

atoms that initially rest in the vicinity of the GB are gradually absorbed by the sinks, as shown in Fig. 6 (a). When there are

helium atoms constantly depositing to the GB (e.g. s = 0 . 01 /s), the GB solute concentration drops initially, but the trend is
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Fig. 7. The relative deviation due to the omission of higher-order terms during the derivation of the sink capture efficiency ω 0 . In conventional continuum 

models (e.g. Yoo and Mansur, 1976 ), ω 0 given by Eq. (61) is derived based on a leading-order approximation (up to O( ln (1 /r nv 
√ 

ρ)) ) to the underlying 

microscopic model presented in Section 2 , if the hydrostatic pressure p is ignored. In contrast, the expression for ω 0 given by (52) obtained based on the 

three-scale homogenisation scheme, also captures the next-order effect (up to O(1) ). The relative deviation due to the omission of higher-order terms is 

as big as 0.3, even when r nv 
√ 

ρ falls below 0.01. Here p 0 = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reversed as more helium atoms arrive at the GB. It is noted that in practice, helium gas often enters a specimen from its

one side, and diffuse throughout it. This means it may be more appropriate to study case III with the PDE system derived

in Section 3.4 , and the topic will be discussed in greater detail elsewhere. 

5. Discussion 

The discussion will be made from three aspects: comparison of the sink capture efficiency predicted here with conven-

tional results, identification of the conditions governing the onset of sink saturation and solutions for optimally implement-

ing nanovoids on grain boundaries. 

5.1. Sink capture efficiency 

The derived homogenised model is firstly compared with the existing models alike. In fact, the (two-dimensional) mech-

anism considered here has a strong similarity with the works by Mansur and co-workers (e.g. Yoo and Mansur, 1976 ), where

the collective behaviour of point defects (such as bulk interstitial atoms and vacancies) diffusing among dislocation forests

is formulated. If we follow the same idea used by Mansur and co-workers to model the present problem, the evolution of

GB interstitial concentration is still governed by Eq. (56) , while the parameter ω 0 , which is termed as the “sink capture

efficiency” ( Was., 2017 ), takes a different form (if compared with Eq. (52) ): 

ω 0 = 

2 π

ln 

1 
r nv 

√ 

ρ

. (61) 

From an asymptotic viewpoint, Eq. (61) is obtained based on a leading-order approximation ( O( ln (1 /r nv 
√ 

ρ)) ) to the mi-

croscopic dynamics formulated in Section 2 with the hydrostatic pressure p ignored, and the approximation is supposed to

be accurate enough provided r nv 
√ 

ρ � 1 . Nevertheless, since the logarithm function tends to infinity relatively slowly, the

actual deviation due to the omission of higher-order terms ( O(1) and above) is considerably high. This is seen from a com-

parison between Eq. (61) and the sink capture efficiency given by Eq. (52) which includes the next-order ( O(1) ) effect. It is

found that the (relative) deviation caused by neglecting O(1) terms amounts to | k 0 / ln r nv 
√ 

ρ| , where k 0 is recalled to be a

fixed parameter (k 0 = 1 . 3127) . In Fig. 7 , the relative deviation (due to the omission of higher-order terms) is plotted against

the non-dimensional parameter r nv 
√ 

ρ . It is observed that for the case when the pressure term is ignored (i.e. p 0 = 0 in Eq.

(52) ), the deviation is still as big as 30%, when r nv 
√ 

ρ falls below 0.01. Therefore, the accuracy of the continuum description

of defect-sink interactions can be greatly improved by use of the three-scale homogenisation approach introduced in this

article. 

5.2. Conditions governing the onset of sink saturation 

Another aspect of advantage the derived homogenisation model shows over the existing models alike is that it can be

employed to identify the conditions under which sinks become saturated. With reference to Eq. (56) , nanovoids should stop

absorbing GB interstitial atoms when ω = 0 . According to Eq. (52) , this indicates p �V = 4 k T . With use of Eq. (9) , the
0 0 B 
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Fig. 8. The value of r ∗nv reflects the GB interstitial absorption capability of the corresponding system. A greater r ∗nv indicates that it is relatively easy for 

nanovoids to get saturated. (a) r ∗nv against a non-dimensional parameter γ / k B T ; (b) r ∗nv against temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

saturation condition is expressed by 

p g �V i −
2�V i γ

r ∗nv 

= 4 k B T , (62)

where r ∗nv is saturation radius, that is, the radius at which sinks become saturated. The value of r ∗nv reflects the GB interstitial

absorption capability of the corresponding system. A greater r ∗nv indicates that it is relatively easy for nanovoids to get

saturated. 

If p g is further expressed by the ideal gas formula (10) , the saturation condition (62) reads 

3 N He 

4 π
·
(

1 

r ∗nv 

)3 

− 2 γ

k B T 
· 1 

r ∗nv 

− 4 

�V i 

= 0 . (63)

In Fig. 8 (a), r ∗nv calculated by using Eq. (63) is plotted against γ / k B T with the helium number per bubble being 10 2 , 10 4

and 10 6 . It is seen that an increase in surface energy density γ or a drop in temperature T brings down the degree of

the GB interstitial absorption capability of the corresponding system. It can also be asserted from Fig. 8 (a) that r ∗nv grows

with N He , because a stronger hydrostatic pressure gradient is induced by more helium atoms per bubble. Given N He , there

exits a maximum saturation radius r ∗nv = ( 
3�V i N He 

16 π ) 
1 
3 , which corresponds to 

γ
k B T 

= 0 . In Fig. 8 (b), r ∗nv is also plotted against

temperature T under various surface energy density γ . 

It is noted that under irradiation, voids in the bulk may also get saturated when they are filled with inert gas, and the

method devised here can be generalised to identify the saturation condition for voids in the bulk. 

5.3. Optimal nanovoid implementation on grain boundaries 

Now we analyse the derived ODE system so as to quantitatively identify how the nanoscopic design parameters (such as

the initial r nv , ρ , D i and N He etc.) affect the long-time behaviour of GB interstitial concentration. As mentioned in Section 1 ,

our goal is to improve the absorption capability of the corresponding nanovoid systems to GB interstitial atoms, for a rel-

atively long period. When nanovoids are implemented on GBs, it can be read from Figs. 4 and 5 that there exists a time

interval (stage 1 and 2), when radiation induced interstitial atoms are being absorbed by nanovoids. Here we term this

period the “low-concentration” period, and in this subsection, we will look for an optimal solution for nanovoid implemen-

tation on GBs so as to extend this low-concentration period. 

Here we use a quantity M to denote the GB interstitial absorption rate by nanovoids coming from the last term

of Eq. (56) : 

M = ρD i ω 0 = 

2 πρD i 

log 1 
r nv 

√ 

ρ + 

4 p 0 �V i 
4 k B T −p 0 �V i 

− k 0 
, (64)

where the expression for ω 0 in Eq. (52) is used. In order to maintain the interstitial absorption rate at a high level, M

should take large values. Then the design problem becomes how to choose ρ , r nv and N He , so as to maximise M . A simple

analysis to Eq. (64) shows that the value of M can be brought up by an increase in ρ or r nv , or alternatively by a decrease

in N He (by means of p 0 ). However, the aforementioned design parameters are not in general mutually independent in prac-

tice. For example, nanovoids can be introduced by implementing dislocation networks on coherent/semicoherent interfaces
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Fig. 9. (a) The quantity M defined by Eq. (64) against ρ . If GB nanovoids are introduced by implementing dislocation networks on GBs ( Shao et al., 2013 ), 

then the total free volume between interfaces per area should be fixed, i.e. ρr 3 nv is a constant. An increase in ρ can effectively increase M in this case. Here 

p 0 = 0 . (b) Evolution of GB interstitial concentration with various initial nanovoid sizes and ρr 3 nv is fixed to be 0.1nm. All curves converge to a straight line 

(of slope s ), as the corresponding low-concentration periods terminate. Here N He = 0 . 
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Fig. 10. Evolution of GB interstitial concentration where nanovoids are filled with helium gas. By following the treatment proposed by Shao et al. 

(2013) and Chen et al. (2015) , the initial ρr 3 nv and p 0 are fixed to be 0.1nm and 14MPa, respectively. The low-concentration period terminates earlier 

for samples with smaller bubbles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Shao et al., 2013 ). Under this treatment, the total free volume between interfaces per area should be fixed, i.e. ρr 3 nv is a

constant. As a result, an increase in r nv inevitably brings down ρ . In order to better trade off between the choice for ρ and

r nv , M is plotted against ρ in Fig. 9 (a) with ρr 3 nv fixed and p 0 = 0 . It is observed that a denser nanovoid implementation

scheme seems more effective for extending the low-concentration period. In Fig. 9 (b), the evolution of GB interstitial con-

centration is shown under N He = 0 and different initial nanovoid sizes. It is observed that all curves converge to a same

straight line (of slope s ) as the corresponding low-concentration periods terminate. This is because the maximum number

of interstitial atoms that can be absorbed by nanovoids per area is already pre-fixed ( ρr 3 nv = 0 . 1 nm). 

Then we investigate how the presence of helium atoms in nanovoids quantitatively affects the long-time behaviour of GB

self-interstitial concentration. It is noted that when the treatment proposed by Shao et al. (2013) and Chen et al. (2015) is

adopted, the initial mean-field hydrostatic pressure p m 

generally equals the outside gas pressure. According to Eq. (16) , this

means p 0 needs to be fixed so as to make meaningful comparisons between specimens with different design parameters. In

Fig. 10 , the evolution of GB interstitial concentration with various initial bubble sizes is shown, where we require not only

ρr 3 nv = 0 . 1 nm, but also p 0 = 14 MPa. It is observed that the low-concentration period terminates earlier for samples with

smaller bubbles. This can be rationalised with reference to Eq. (10) : provided that the surface effect is stronger for smaller

bubbles, more interior initial gas atoms are needed so as to generate a same p 0 . As the bubble shrinks in size, hydrostatic

pressure gradient for smaller bubbles grows much faster ( ∼ r −3 
nv ). As a result, systems with initially smaller bubbles saturate

earlier. 

To summarise, implementing dense dislocation networks on coherent/semicoherent interfaces offers an effective way to 

raise GB interstitial absorption rate by nanovoids. However, when nanovoids are filled with inert gas, the bubble size should

not be too short, as the low-concentration period terminates earlier for systems with smaller bubbles. 
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6. Conclusion 

In this work, a three-scale homogenisation approach is proposed to simulate the long-time behaviour of interstitial con-

centration on the grain boundaries of irradiated materials embedded with nanovoids. The derived model effectively covers

three different scenarios as listed in the beginning of Section 2 . With all important nanoscopic design parameters well re-

tained, the derived ODE/PDE system exhibits an excellent balance between efficiency and resolution. Compared with the

existing results alike, the derived model incorporates the effect of multiple sinks on interstitial migration, and the accu-

racy of the resulting continuum description to the underlying mechanisms is substantially improved. Besides, the presented

homogenisation result naturally formulates a sink saturation condition under which bubbles shade themselves from GB in-

terstitial migration. With the obtained model, both of the key experimental phenomena reported by Chen et al. (2015) are

well rationalised. The long-time behaviour of GB interstitial concentration with various nanoscopic design parameter values

is investigated by using the derived model, and optimal solutions for nanovoid implementation on grain boundaries are also

discussed. 

The successive works of the present study will be conducted along two directions. First, the derived model should be

combined with a homogenised description of interstitial-vacancy evolution in grain interiors, so as to derive a more com-

prehensive model that can be used for prediction of irradiated materials’s lifetimes. Second, the three-scale homogenisation

approach can be generalised to formulate the collective behaviour of mechanisms that exhibit similarities with the present

studies. For example, it can be used to upscale the discrete dislocation dynamics incorporating vacancy diffusion to a con-

tinuum level. 
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Appendix A 

Now we will show that when materials are linearly elastic and isotropic, the hydrostatic pressure p related to stress field

σ by Eq. (7) satisfies the three-dimensional Laplacian equation. 

Hooke’s law reads 

σi j = λδi j u k,k + μ(u i, j + u j,i ) , i, j = 1 , 2 , 3 , (65)

where the Einstein summation is employed; u i, j denotes the derivative of u i with respect to its j th entry; λ and μ are two

elastic constants; δij is the Kronecker delta. Hence the first stress invariant is given by 

tr ( σ) = σii = (3 λ + 2 μ) u i,i . (66)

Combining Eq. (65) and the force equilibrium equation ( σi j, j = 0 ) gives the Navier–Cauchy equation: 

μu i, j j + (λ + μ) u j,i j = 0 , i = 1 , 2 , 3 . (67)

Taking divergence on both sides of Eq. (67) gives 

(λ + 2 μ) u i,i j j = 0 . (68)

A comparison between Eqs. (66) and (68) indicates 

∇ 

2 tr ( σ) = 0 , (69)

which immediately leads to the equation for hydrostatic pressure, which is Eq. (8) . 

Appendix B 

We now look for an expression for the hydrostatic pressure due to a family of nanovoids of identical radius r nv peri-

odically distributed on { (i/ 
√ 

ρ, j/ 
√ 

ρ) | i, j ∈ Z } , i.e. p s in Eq. (15) . First, we look for the pressure field due to an individual

nanovoid located at the origin in R 

3 which is denoted by p ind . Since p ind satisfies the three-dimensional Laplacian equation,

along with the boundary condition p | ∂�nv 
= p 0 , we obtain 

p ind = 

p 0 r k √ 

x 2 + y 2 + z 2 
. (B.1)

As we are only interested in the pressure field at interfaces, we let z = 0 . 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/100010509
http://dx.doi.org/10.13039/501100002855
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Table B1 

Truncation error of the finite sum given by Eq. (B.4) . 

Truncation error | A 5 − A 1 | | A 10 − A 5 | | A 50 − A 10 | 
(0.1, 0) 3 . 9 × 10 −18 3 . 3 × 10 −19 1 . 3 × 10 −19 

(0.1, 0.1) 6 . 2 × 10 −3 1 . 1 × 10 −4 1 . 8 × 10 −5 

(0.25, 0.25) 0.039 6 . 8 × 10 −4 1 . 1 × 10 −5 

(0.3, 0.1) 0.0188 3 . 3 × 10 −4 5 . 4 × 10 −5 

(0.5, 0.5) 0.15 2 . 7 × 10 −3 4 . 5 × 10 −4 

 

 

 

 

 

 

 

 

 

 

In order to obtain a locally periodic expression for p s (of period 1 / 
√ 

ρ), one can simply sum all repeated images of p ind :

p s = p 0 
√ 

ρr nv · g 0 ( 
√ 

ρx, 
√ 

ρy ) , (B.2) 

where the (non-dimensional) function g ( s 1 , s 2 ) is defined by means of the finite part of a divergent series: 

g 0 (s 1 , s 2 ) = f.p. 

( ∑ 

i, j∈ Z 

1 √ 

(s 1 − i ) 2 + (s 2 − j) 2 

) 

. (B.3) 

In order to express g 0 , we consider a family of finite sum A n first: 

A n � 

n ∑ 

k =0 

( ∑ 

max (| i | , | j| )= k 

3(s 1 − i )(s 2 − j) 

((s 1 − i ) 2 + (s 2 − j) 2 ) 5 / 2 

) 

. (B.4) 

It can be checked that every term from A n is simply the second derivative of the corresponding term in the series in Eq.

(B.3) with respect to s 1 and s 2 . Moreover, compared to Eq. (B.3) , the summation in A n is arranged in a specific order. Hence

it is reasonable to have 

∂ 2 g 0 
∂ s 1 ∂ s 2 

= lim 

n →∞ 

A n . (B.5) 

The proof of the convergence of lim n → ∞ 

A n is not trivial. Here for simplicity, we check the truncation error of A n at various

selected points for 0 < s 2 < s 1 < 1/2, and the results are shown in Table B.1 . It can be asserted that lim n → ∞ 

A n is a

convergent series. 

Now combining Eqs. (B.4) and (B.5) , the expression for g 0 is available: 

g 0 (s 1 , s 2 ) = 

∫ s 1 

0 

∫ s 2 

0 

[ 

lim 

n →∞ 

n ∑ 

k =0 

( ∑ 

max (| i | , | j| )= k 

3( ̃  s 1 − i )( ̃  s 2 − j) 

(( ̃  s 1 − i ) 2 + ( ̃  s 2 − j) 2 ) 5 / 2 

) ] 

d ̃

 s 1 d ̃

 s 2 + C, (B.6) 

where C is a constant. In theory, C is determined by imposing the boundary condition g 0 = 1 on 

√ 

x 2 + y 2 = r nv . However,

since only the gradient term of p s is of use, we can simply let C = 0 . A comparison between Eqs. (17) and (B.2) suggests

that the non-dimensional function g in Eq. (17) satisfies 

g(s 1 , s 2 ) = g 0 (s 1 , s 2 ) ·
√ 

s 2 
1 

+ s 2 
2 
. (B.7) 

It can be observed that g(s 1 , s 2 ) ∼ O(1) for s 1 , s 2 ∈ [ −1 / 2 , 1 / 2] . Moreover, since g 0 ∼ 1 / 
√ 

s 2 
1 

+ s 2 
2 

as 
√ 

s 2 
1 

+ s 2 
2 

→ 0 . Therefore,

lim √ 

s 2 
1 
+ s 2 

2 
→ 0 

g(s 1 , s 2 ) = 1 . (B.8) 

Appendix C 

Now we look for the solution to Eq. (27) with boundary condition c in = 1 on � = 

√ 

ξ 2 + η2 = 1 . Since the boundary

condition is spherically symmetric, c in should be a function of only ϱ. Then Eq. (27) becomes 

d 

2 c in 
d � 

2 
+ 

1 

� 

d c in 
d � 

− β

(
c in 
� 

3 
− 1 

� 

2 

d c in 
d � 

)
= 0 . (C.1) 

As the explicit solution to Eq. (C.1) may not be available, we first consider its solution behaviour for small β . If expanding

c in ∼ c (0) + βc (1) + · · · , the leading order c (0) reads 

d 

d � 

(
� 

d c (0) 

d � 

)
= 0 (C.2) 

with c (0) 
∣∣
�=1 

= 0 , which indicates c (0) = A log � with A is a constant to be determined. 
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Thus at the first-order, 

d 

d � 

(
� 

d c (1) 

d � 

)
= 

A 

� 

2 
· ( log � − 1 ) , (C.3)

which gives rise to 

c (1) = A ·
(

A 1 − A 2 log � − 1 

� 

− log � 

� 

)
, (C.4)

where A 1 = 1 because of the boundary condition; A 2 = 0 because c (1) decays at infinity. Thus 

c (1) = A ·
(

1 − 1 

� 

− log � 

� 

)
. (C.5)

Sequentially, we can obtain 

c (2) = A ·
(

1 

4 

− 1 

� 

+ 

3 

4 � 

2 
+ 

log � 

2 � 

2 

)
; (C.6)

c (3) = A ·
(

1 

18 

− 1 

4 � 

+ 

1 

2 � 

2 
− 11 

36 � 

3 
− log � 

6 � 

3 

)
; (C.7)

c (4) = A ·
(

1 

96 

− 1 

18 � 

+ 

1 

8 � 

2 
− 1 

6 � 

3 
+ 

25 

288 � 

4 
+ 

log � 

24 � 

4 

)
; (C.8)

· · · · · ·
In principle, one can write c in = 

∑ ∞ 

n =1 β
n c (n ) . Here as the behaviour of g ( ϱ; β) as ϱ → ∞ is of most use for future analysis,

we write 

lim 

�→∞ 

c in = β + 

β2 

4 

+ 

β3 

18 

+ 

β4 

96 

+ · · · , (C.9)

and lim ϱ → ∞ 

c in can be approximated by truncating the series in Eq. (C.9) . However, the above series converges only for

small β . There exists some β = β∗, where the series in Eq. (C.9) becomes divergent. In fact, this convergent radius β∗ is

highly related to the saturation state that will be discussed in Section 5 . Hence in order to highlight β∗, an approximation

to the series in Eq. (C.9) can be made by 

lim 

�→∞ 

g(�;β) ≈ β + 

β2 

4 

+ 

β3 

4 

2 
+ 

β4 

4 

3 
+ · · · = 

4 β

4 − β
, (C.10)

which leads to β∗ = 4 . 
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