Irradiation and Oxidation Behaviors of Ti₂AlC—a candidate cladding material for nuclear reactors

Fei Wang¹, Ziyad Smoqi¹, Michael Nastasi², Bai Cui¹

Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Nebraska Center for Energy Sciences Research, University of Nebraska–Lincoln

Material: MAX phase

- Ti₂AlC is a member of MAX phases, which is a group of ternary carbides and nitrides whose general formula is M_nAl_xN_y(n=1, 2 or 3), where M is an early transition metal, A is an A-group element, and X is carbon or nitrogen.

Similar to metal:
- Excellent electrical conductors
- Thermal conductivity
- Exceptionally damage tolerant
- Good machinability

Similar to ceramic:
- Corrosion resistance
- Creep resistance
- High-temperature stability
- Thermal shock resistance

Motivation

The combination of oxidation resistance and low neutron activation of MAX phase makes it a viable candidate for nuclear applications. This project seeks to:

I. The **irradiation resistance** and microstructure evolution of Ti₂AlC at elevated temperatures.

II. The **oxidation resistance** of Ti₂AlC in steam at high temperatures.

In situ irradiation test of Ti₂AlC

I. Evolution of microstructure

- (a) RT, 2dpa
- (b) RT, 4dpa

Figure 4. Weak-beam dark field images of irradiation defects in Ti₂AlC at 4 dpa and 800 °C under two conditions.

II. Evolution of irradiation defects

- (a) 25 °C, [0001] zone
- (b) 4 dpa, 800 °C, [0001] zone

Figure 5. Diffraction pattern of Ti₂AlC after irradiation: (a) 4 dpa, 25 °C, [0001] zone; (b) 4 dpa, 800 °C, [0001] zone.

Figure 6. The evolution of (a) size and (b) areal density of irradiation defects in Ti₂AlC as a function of irradiation dose and temperature.

Steam oxidation test of Ti₂AlC

I. Weight gain curves

Figure 8. Weight gain of Ti₂AlC and zircaloy vs. exposure time in steam. The weight gain of Ti₂AlC is much lower than Zircaloy.

II. Surface of oxidation scales

Figure 9. Surface morphology of Ti₂AlC oxidized in steam. TiO₂ dominant

Figure 10. EDS analysis of the cross-section of oxidation scales. TiO₂ as top layer

Conclusions

- During irradiation test, small dislocation loops formed on the basal plane and accumulate in the microstructure. The dislocation loops slowly grow with the irradiation dose and raising temperature.

- No amorphization or phase transformation was observed. Ti₂AlC is more irradiation resistant at 800 °C than at 25 °C.

- Ti₂AlC showed excellent oxidation tolerance in steam at 600, 800 and 1000 °C due to the formation of a continuous protective Al₂O₃ layer.

Acknowledgements

This work was partly supported by the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research. The research was performed in part in the Nebraska Nanoscale Facility: National Nanotechnology Coordinated Infrastructure and Nebraska Center for Materials and Nanoscience, which are supported by the National Science Foundation under Award ECCS: 1542182, and the Nebraska Research Initiative. We thank Mr. Peter Baldo, Weimei Li and Marquis A. Kirk for their invaluable help and discussion during the irradiation experiment. The IVEM facility at Argonne National Laboratory is supported by DOE-NE.

Experiment set up

- Sample normal
- Irradiation plane

Figure 1. Experimental set up for high temperature steam oxidation.

Figure 2. The IVEM-Tandem in-situ irradiation facility

Figure 3. Evolution of irradiation defects in Ti₂AlC as a function of irradiation dose and temperature during 1 MeV Kr ion irradiation.

Figure 4. Weak-beam dark field images of irradiation defects in Ti₂AlC at 4 dpa and 800 °C under two conditions.

Figure 5. Diffraction pattern of Ti₂AlC after irradiation: (a) 4 dpa, 25 °C, [0001] zone; (b) 4 dpa, 800 °C, [0001] zone.

Figure 6. The evolution of (a) size and (b) areal density of irradiation defects in Ti₂AlC as a function of irradiation dose and temperature.

Figure 7. HRTEM images of the (0 0 0 1) plane of Ti₂AlC samples after irradiation: (a) 4 dpa, 25 °C; (b) 4 dpa, 25 °C; (c) 4 dpa, 800 °C.

III. High resolution TEM images

- 8.8% disorder
- 34.3% disorder
- 24.8% disorder

Figure 7. HRTEM images of the (0 0 0 1) plane of Ti₂AlC samples after irradiation: (a) 4 dpa, 25 °C; (b) 4 dpa, 25 °C; (c) 4 dpa, 800 °C.

Table 1

<table>
<thead>
<tr>
<th>Irradiation Dose (dpa)</th>
<th>Temperature (°C)</th>
<th>Crystal Plane</th>
<th>Disorder Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25</td>
<td>(0001)</td>
<td>8.8 ± 1.1</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>(0001)</td>
<td>34.3 ± 2.1</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>(0001)</td>
<td>24.8 ± 3.0</td>
</tr>
</tbody>
</table>