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Existing methods addressing automated fault detection and diagnosis (FDD) for vapor-com-
pression air-conditioning equipment have good performance for faults that occur individually
but have difficulty handling multiple simultaneous faults. In addition, these methods either
require high-cost measurements or measurements over a wide range of conditions for training
reference models, the development of which can be time consuming and cost prohibitive. This
paper formulates model-based FDD in a generic way and demonstrates that decoupling is the
key to handling multiple simultaneous faults. To eliminate a cost-prohibitive overall system
model, an alternative physical decoupling methodology to mathematical decoupling is devel-
oped. During the mathematical development, a previously developed FDD method termed the
statistical rule-based method is reexamined and cast within the general mathematical frame-
work. The paper also includes an evaluation of the FDD method in terms of both sensitivity and
robustness.

INTRODUCTION

Automated fault detection and diagnosis (FDD) has been successfully applied to critical sys-
tems, such as space exploration and nuclear power plants, in which early identification of small
malfunctions would prevent loss of life and damage to equipment. HVAC systems often do not
function as well as expected due to faults introduced during initial installation or developed dur-
ing routine operation. In the late 1980s, some researchers investigated common faults and meth-
ods for FDD in simple vapor-compression cycles, such as household refrigerators (Stallard
1989). With the growing realization of the benefits brought by FDD, many publications related
to HVAC FDD have appeared in the last decade (Comstock et al. 1999; Li 2004), and interest is
increasing. According to the IEA ANNEX 34 final report (Dexter and Pakanen 2001), 23 proto-
type FDD performance monitoring tools and 3 validation tools have been developed, 30 demon-
strations have taken place in 20 buildings, 26 FDD tools have been tested in real buildings, and
4 performance monitoring schemes have been jointly evaluated on 3 documented data sets from
real buildings. Since 2001, 39 more papers have appeared (Li 2004). Overall, the literature can
be summarized as follows. 

• In terms of focus, the single largest focus of research has been on variable-air-volume (VAV)
air-handling units (AHUs), accounting for 45% of the publications. Packaged air-conditioning
systems come a distant second with 20% of the publications, and chiller systems have been
the third focus at 18%. Rooftop and other packaged air conditioners are used extensively
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throughout small commercial and institutional buildings, but compared to larger systems, they
tend not to be well maintained. In addition, for both packaged and chiller systems, faults
occur frequently in vapor-compression cycle equipment. Widespread application of auto-
mated FDD for vapor-compression cycle equipment will significantly reduce energy use and
peak electrical demand, downtime, and maintenance costs.

• From the methodology point of view, there are three general approaches for FDD, namely,
model-based, data-driven, and knowledge-based. Model-based methods use mathematical
models often constructed from first principles. They are applicable to information-rich and
modeling-manageable systems, where satisfactory models can be built in an affordable way to
satisfy FDD application and enough sensors are available. Methods described by Rossi and
Braun (1997), Siegel and Wray (2002), Shaw et al. (2002), Yoshida and Kumar (2001a,
2001b), and Dexter and Ngo (2001) fall into this category. The data-driven approach
addresses FDD by means of directly processing a large amount of data to capture some mean-
ingful statistics. It mainly applies to large-scale systems, such as the whole-building system,
where it is difficult to construct an analytical model but heavy instrumentation is used and an
exceptionally large amount of data is produced. Methods used by Riemer et al. (2002) and
Reddy et al. (2003) can be classified in this category. The knowledge-based approach uses
qualitative models that are based on causal analysis, expert systems, and/or pattern recogni-
tion. It is well suited for systems where, like the data-driven approach, detailed mathematical
models are not available but, unlike the data-driven approach, a large amount of data is not
available. The technique presented by Gerasenko (2002) is an example. Although all three
FDD approaches have found their applications in HVAC systems, the model-based approach
has been most used (Li 2004). This is because most HVAC systems are relatively small-scale,
not heavily instrumented, and modeling-manageable.

• Most of the proposed techniques require either expensive system models or expensive mea-
surements or both. For example, Rossi and Braun (1997) originally proposed the statistical
rule-based (SRB) FDD technique and applied it to vapor-compression systems. This tech-
nique uses relatively low-cost sensors (nine temperature and one relative humidity) but
requires an expensive system model, which entails a wide range of training data. Further
reducing the implementation cost is vital for a practical FDD technique.

• Multiple simultaneous faults have barely been addressed in the literature. Most of the publica-
tions have only dealt with the presence of single faults. Breuker (1997) investigated the effect
of two simultaneous faults on the performance of the SRB technique, which was developed
for single faults. He used a simulation model and found that the presence of two simultaneous
faults in a rooftop air conditioner did not result in the diagnosis of a third fault that was not
present in the system. However, the diagnostic classifier was not capable of making multiple
diagnoses, and some combinations of faults increased FDD sensitivity whereas others
decreased sensitivity. Further investigations are warranted for testing more simultaneous
faults under real operating conditions and for developing a methodology that can diagnose
multiple faults.

The goal of the research described in this paper was to develop a low-cost diagnostic method-
ology for handling multiple simultaneous faults in vapor-compression cycle systems with
emphasis on packaged air conditioners. This paper first formulates model-based FDD tech-
niques in a general mathematical way and finds that the methodology of decoupling is the key to
handling general multiple-input and multiple-output issues. In order to apply the decoupling
methodology to noncritical HVAC&R systems, a physical decoupling methodology is devel-
oped that eliminates a cost-prohibitive overall system model. Finally, the method is imple-
mented and evaluated in terms of both sensitivity and robustness.
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MATHEMATICAL FORMULATION OF MODEL-BASED FDD
In a broad sense, all FDD approaches involve the use of quantitative or qualitative models.

They can be either dynamic or steady-state, either physical or black-box or gray-box, either
mathematical or linguistic. Mathematical models relate measured or derived states of the system
to external inputs through the use of mathematical equations, while linguistic models, also
known as syntactic models, describe the behavior of a system through the use of linguistic
expressions such as logic sequences (e.g., fuzzy linguistic models). Since the majority of FDD
approaches, especially for HVAC&R applications, are based on mathematical models, the fol-
lowing development is based on mathematical models. However, the development could be
extended to linguistic models as well.

The thermodynamic states of a vapor-compression cycle are functions of external driving
conditions and various faults, as shown in Figure 1a. It is important for FDD not to misinter-
pret variations in thermodynamic state-variables caused by changes in the driving conditions
for faults. If measurements are classified directly, the classification can be complicated to
consider the effect of external driving conditions. In order to simplify classification and
improve overall FDD performance, normal operation models are typically used to predict
expected values for these measurements under normal operation in terms of measured exter-
nal driving conditions. For any steady-state measurement, the difference between expected
and actual measurement values (residuals) should have a zero mean when there are no faults
(see Figure 1b) and a probability distribution that is a weak function of driving conditions but
dominantly dependent on faults.

The input-output relationship of the system after being incorporated with a normal operation
model (fault-free model) can be described approximately as follows:

Y = F(X) (1)

where X = [x1, x2, ..., xn]T, Y = y1, y2, ..., ym]T, and F(X) = [f1(X), f2(X), ..., fm(X)]T. X is the fault
vector, with each entry xi representing a measure of the level for each fault. Y is the state vari-
able residual vector, with each entry yi representing a particular state-variable residual. F(X) is a
nonlinear function vector with each individual nonlinear function fi(x1, x2, ..., xn) defining the
relationship between different faults at different levels, the state-variable residual Y; n is the
number of fault types considered; and m is the number of chosen state variables.

After a normal model is incorporated, FDD is simplified to deal with only faults and normal
variations in residuals independently. In a broad sense, this is the first occurrence of decoupling,

Figure 1. Role of models in FDD: (a) system incorporated with a normal operation model
and (b) two-dimensional residual distribution.
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which is between faults and driving conditions. Typically, FDD is achieved by two separate
steps—fault detection and fault diagnosis.

Fault Detection

Fault detection, which is to indicate whether the system is normal or not, can be done essen-
tially by determining whether the resulting Y in Equation 1 is zero or not in a statistical sense.
The tool used to achieve fault detection is termed the fault detection classifier. Although some
quantitative fault diagnosis techniques can also do fault detection at the same time, implement-
ing fault detection prior to attempting any diagnosis is recommended for the following reasons:

• Fault detection is much easier than fault diagnosis, and the probability for abnormal opera-
tion is lower than for normal operation. Therefore, the use of separate FDD steps can
reduce computational requirement costs because the diagnosis step can be skipped when
there are no faults.

• Fault detection can take statistical analysis into account easily, which makes the fault diagno-
sis method more flexible.

Original SRB Fault Detection Classifier. Rossi and Braun (1997) proposed a way to evalu-
ate whether Y is zero indirectly by looking into the overlap (see Figure 1b) of the actual distribu-
tion and the expected distribution of the residual(s). When the overlap of the actual distribution
and the expected distribution of the residual(s) decreases to a preset value (the classification
error threshold), a fault is considered to be present. 

The direct numerical integration of this overlap for high-dimensional (e.g., seven-dimensional
for our case) probability distributions cannot be performed in real time on a microprocessor.
Therefore, to obtain the analytical solution of overlap, Rossi and Braun (1997) employed the
concept of a Bayes classifier, also known as the Bayes error (Fukunaga 1990). 

The other merit of this classifier is that it converted the classification of an individual obser-
vation Y among infinite predefined classes ω1, ω2, ..., ωn, ... inversely into identification of
whether any class ωi deviating from the normal operation appears using a series of observations
Y1, Y2, ..., Yn with certain overlap and let the fault diagnosis classifier separate different faults.

Since it is impracticable, if not impossible, to estimate the high-dimensional covariance
matrix of the current operation online, an identical covariance matrix with that of normal opera-
tion is assumed. However, if this assumption is not well grounded, it may undermine the fault
detection performance because the overlap is highly dependent on the covariance matrix. It is
really difficult to evaluate the identical covariance matrix assumption because a large data set is
necessary to estimate a high-dimensional covariance matrix with reasonable accuracy. However,
it can be evaluated indirectly by checking the variance of individual variables. According to the
experimental data collected by Breuker and Braun (1998):

• Faults have significant impact on the variance of state variables. For example, variances of
subcooling, superheating, and evaporating temperature increase when the system has a refrig-
erant leakage fault (Li and Braun 2003).

• Different faults have different impacts. For example, refrigerant leakage has a larger impact
on the variance of subcooling than evaporator fouling (Li and Braun 2003).

As a result of these considerations, a new fault detection classifier—one that does not require
a faulty operation covariance matrix—was developed; it is described in the next section.
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Normalized Distance Fault Detection Classifier. Li and Braun (2003) presented the devel-
opment of a simple fault detection classifier that can be used for both individual and multiple
simultaneous faults. The classifier evaluates the following inequality: 

(2)

where  is the normalized distance, (χ2)−1{(1 − α),m} is the
threshold of normalized distance for normal operation, (χ2)−1{,}is the inverse of the Chi-square
cumulative distribution function, α is the false alarm rate, and m is the degree of freedom or
dimension that is equal to the number of chosen state variables. Class ω1, normal operation, is
selected if the left-hand side is less than the right-hand side, and class ω2, faulty operation, is
selected otherwise. Due to modeling error, Mnormal is not exactly zero, so Equation 2 takes mod-
eling error into account to statistically evaluate whether Y is zero or not.

The above fault detection scheme can be illustrated using Figure 2. The residual distribution
of normal operation can be characterized in terms of the covariance matrix Σnormal and mean
vector Mnormal and depicted in the residual space plane as in Figure 2. In the residual space
plane, any operating states (points) outside the normal operating region are classified as faulty
while those inside the normal operation region are classified as normal. The normal operating
ellipse is the fault detection boundary, which is determined by Mnormal, Σnormal, m, and α. 

By contrast with the original SRB fault detection classifier, this normalized distance fault
detection classifier is more robust in that it eliminates faulty operation information and only uses
normal operation information, such as the normal mean and normal covariance matrix. Practi-
cally, normal operation information is more accessible and more reliable compared to faulty
operation data. In addition, this scheme is intuitive in that the opposite of normal operation is
abnormal operation. If the current operation point is not inside the normal operation region at a
certain confidence according to reliable prior information, it should be classified as a faulty
operation. Another advantage is that the fault detection decision is based on individual points
rather than on a distribution, so it is more computationally efficient for online application.

Y Mnormal–( )TΣnormal
1–

Y Mnormal–( )  

  >
ω2:Faulty

ω1:Normal

  ≤ χ2( )
1–

1 α–( ) ,m{ }

Y Mnormal–( )TΣnormal
1–

Y Mnormal–( )

Figure 2. Illustration of FDD strategy.
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Fault Diagnosis

Fault diagnosis, which entails the determination of the kind and location of the detected fault
from a list of possibilities, needs to use the resulting Y (knowns) to find the causes X (unknowns)
qualitatively or quantitatively. The nonlinear Equation 1 cannot get unique solutions for X for a
given Y if m < n and may result in inconsistencies if m > n, but it would not lose any generality
to assume m = n. If F(X) is known, multiple simultaneous fault diagnosis becomes easy. How-
ever, it is very difficult, if not impossible, to find F(X). To simplify Equation 1, the first two
items of Maclaurin’s series can be used to linearize the nonlinear equation as follows:

(3)

where F(0) = 0 and

is the Jacobian matrix of F(X) evaluated at 0. Compared to F(X), J is much easier to estimate by
experiment, which requires n2 tests. After J is estimated, diagnosis can be done more easily by

(4)

It should be pointed out that a nonsingular matrix J is a necessary and sufficient condition for
the above equation. For a practical engineering problem, this condition is readily guaranteed if
the given set of state variables Y can be used to uniquely describe the system under the possible
fault vector X. It is not difficult at all to find such a set of state variables Y with the help of phys-
ical knowledge.

Original SRB Fault Diagnosis Method. Although J can be estimated approximately by
experiment, it is still not generic because different units of the same type may have different val-
ues of J. Estimation of J for individual systems is only practical for large or critical systems.
Instead of estimating J, the rule-based FDD method proposed by Rossi and Braun (1997) is
equivalent to using the sign of J to do fault diagnosis.

where sign() is the signum function (also called sign function), which extracts the sign of a real
number. If faults occur individually, for example, only individual fault i happens at some time.

Y F 0( ) ∂F
∂X
------ 0( ) X 0–( )+ JX= =

J
∂F
∂X
------ 0( )

∂f1

∂x1
--------

∂f1
∂x2
-------- …

∂f1

∂xn
--------

∂f2

∂x1
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∂f2
∂x2
-------- …

∂f2

∂xn
--------

...
...

...
...

∂fn

∂x1
--------

∂fn
∂x2
-------- …

∂fn

∂xn

--------

= =

X J
1–
Y .=

Jsign sign J( )=

Xsign sign X( ) sign 0, … , xi, … , 0[ ]T( ) 0, … , 1, … , 0[ ]T
= = =
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and then 

So, if a fault happens individually, for a given matrix Jsign, Ysign is determined uniquely by
Xsign and vice versa. Inversely, this can be used to do fault diagnosis by comparing Ysign with the
column of Jsign in the statistical sense or mathematically by 

(5)

By determining which entry of vector Xsign is unity, the fault diagnosis classifier can make a
decision. The advantages of this method are that (1) it is very easy to infer the Jsign accurately by
n simple tests or from experience or qualitative knowledge, compared to n2 well-designed tests
to estimate J roughly; (2) Jsign is generic at least for the same type of system, compared to differ-
ent Js for different systems because there is no linearization approximation for Jsign; (3) this
method of diagnosis uses direction change pattern (sign) to convert an infinite classification
problem (infinite number of fault levels for an individual type of fault) into a multiple classifica-
tion one. The drawback is that it can only handle individual faults. 

Corresponding to the SRB fault diagnosis terminology, Jsign is equivalent to the fault diagno-
sis rules (see Table 1), which are expressed as positive and negative changes in residuals so that
each fault type corresponds to a unique quadrant of a multi-dimensional residual space. To
decide which fault is the most probable is equivalent to identifying which quadrant the current
measurement belongs to. Combined with the normal operating ellipse, coordinate axes form the
fault diagnosis boundary (see Figure 2). 

Similar to the fault detection classifier, Rossi and Braun (1997) proposed a fault diagnosis clas-
sifier to implement the rule-based diagnostic method that involves evaluating the probability of the
current distribution within each fault quadrant. When the probability of the most likely fault class
exceeds that of the second most likely class by a preset threshold (fault probability ratio threshold),
a diagnosis is made. The merit of this classifier is that it maintains the merit of the SRB fault diag-
nosis method, converting an infinite classification problem into a multi-classification one. How-
ever, similar to the fault detection classifier, direct numerical integration of the high-dimensional
(e.g., seven-dimensional for this case) probability distributions cannot be performed in real time
using a microprocessor. Yet, unlike the detection classifier, it is impossible to find an analytical
solution. Therefore, Rossi and Braun (1997) made an assumption that each dimension of the
seven-dimensional density function is independent. In other words, the cross-terms of the current
operation covariance matrix are removed. This assumption simplified the seven-dimensional inte-
gration into a multiplication of seven one-dimensional integrations.  

Table 1. Fault Diagnosis Rules

Fault Type Tevap Tsh Tcond Tsc Tdis ΔTca ΔTea

Refrigerant leakage – + – – + – –

Compressor valve leak + – – – – – –

Liquid restriction – + – + + – –

Condenser fouling + – + – + + –

Evaporator fouling – – – – – – +

Ysign JsignXsign sign
∂f1

∂xi
------- , 

∂f2

∂xi
------- , … , 

∂fn

∂xi
-------

T

⎝ ⎠
⎛ ⎞= =

Xsign sign Jsign
T

Ysign n, n, …, n[ ]T
–( ) .=
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However, the independence assumption can undermine the classifier performance when the
covariance matrix is not diagonal (Li and Braun 2003). To eliminate the independence assump-
tion and improve fault diagnosis performance, a simple distance fault diagnosis classifier, which
does not require integration of the probability distributions, was developed and validated by Li
and Braun (2003). This method has good sensitivity for diagnosing faults and is relatively insen-
sitive to the choice of parameters and different operating conditions over a wide range.

Decoupling-Based Fault Diagnosis Method. With the new FDD classifiers, the merits of
the SRB FDD method are maintained and the performance of the SRB FDD method has been
improved significantly (Li and Braun 2003), but it is still unable to handle multiple simulta-
neous faults. 

In order to extend the easily implemented SRB fault diagnosis idea to handle multiple simul-
taneous faults, Equation 3 can be further transformed as follows:

PY = PJX

where , Z = PY is the transformed feature vector, and
 is the transformation matrix to make  diagonal. There exists an infinite number of

transformation combinations of , P, and Z that can be obtained by arbitrarily choosing a diag-
onal  if matrix J is non-singular (this can be guaranteed by proper choice of Y physically).
This transformation decouples interactions among the different faults and makes each entry of
the feature vector Z only correspond to a unique fault entry of the fault vector X and vice versa. 

(6)

To eliminate impacts of the linearization operation and the driving-condition-independence
assumption on diagnosis, the signum operation is applied to both sides of Equation 6. Since Z,
based on actual measurements or virtual estimates, is corrupted by measurement noise, system
disturbances, and modeling errors, it should be statistically evaluated by the signum operation.
So, the n-dimensional FDD problem has been decoupled to be n one-dimensional SRB FDD
problems.

where sign_stat(Z) is a signum operation of each entry (zi) of matrix Z in a statistical sense,
such that

(7)

It can be seen that the signum operation of each entry (zi) of matrix Z is equivalent to evaluat-
ing the one-dimensional fault detection classifier of Equation 2. Then,

Z ΛX λ1x1, λ2x2, … , λnxn[ ]T
= =

Λ PJ Diag λ1, λ2, … , λn[ ]( )= =
P ΛJ

1–
= Λ

Λ
Λ

X Λ 1–
Z

z1

λ1
----- , 

z2

λ2
-----, … , 

zn

λn

-----
T

= =

sign X( ) sign Λ 1–( )sign_stat Z( )=

sign_stat zi( )

1,– if 
zi μi,normal–( )

σi ,normal

------------------------------------ χ2( )
1–

1 α–( ),1{ }–<

0, if 
zi μi,normal–

σi ,normal
---------------------------------- χ2( )

1–
1 α–( ),1{ }≤

1, if 
zi μi,normal–( )

σi,normal
------------------------------------ χ2( )

1–
1 α–( ),1{ }

 .

>
⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

=



VOLUME 13, NUMBER 2, MARCH 2007 377

(8)

Equation 8 can be easily used to do multiple simultaneous fault diagnosis. Although the
impacts of the linearization operation and driving-condition-independence assumption on diag-
nosis are eliminated and multiple simultaneous fault diagnosis can be handled, P and Z depend
on J. If J is not known, P and Z cannot be determined mathematically. Since there exists an infi-
nite number of transformation combinations of , P, and Z, from the mathematical viewpoint it
can be supposed without proof that there exists at least one Z that has physical meaning. So, if
some Z can be found physically or empirically, the sign of  can also be decided empirically.
Consequently, the methodology to physically construct the decoupled feature vector Z becomes
the key point of this approach. In addition to the previous advantages listed for the SRB fault
diagnosis method, the decoupling-based diagnosis method: 

1. Simplifies fault detection from a high-dimensional problem to n one-dimensional problems.
Equation 2 boils down to the following n one-dimensional equations:

The above one-dimensional fault detection classifier has been implemented into Equation 7.
2. Can achieve with one step by evaluating Equation 8. So the fault diagnosis classifier is

not required.
3. Overcomes the drawback of the SRB diagnosis method and handles multiple simultaneous

fault diagnosis.
4. Becomes more generic and system-independent and does not require complicated rules that

depend on the system.

Unilateral Decoupling Case
The methodology based on full decoupling can handle multiple simultaneous faults easily, but

the criterion of full decoupling is not a necessary condition and can be lowered. There are prac-
tical reasons for lowering the full decoupling criterion. Although a physically decoupled feature
vector Z can be found for a fault vector X, some features may be too expensive to use for a non-
critical FDD application. For example, condenser airflow rate could be a unique decoupling fea-
ture for condenser fouling, but its measurement is too expensive. An alternative way to obtain
this kind of feature is to estimate it using a virtual sensor, which may be corrupted by other
faults. In other words, although fault i may not impact other faults’ features zj’s ( ), its fea-
ture zi would be contaminated by another fault j’s ( ). Therefore, only the coupling from i to
j is broken while the one from j to i is not. The worse case that can be handled is described as 

(9)

where the feature zi would be impacted by faults j (<i) but not by those (>i).
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A sequential FDD method, which is contrasted with the above simultaneous FDD technique,
can be used to solve this case:

• Step 1: Do FDD on fault 1. Because feature z1 is independent of any other faults, fault 1 can

be detected and diagnosed independently. If fault 1 does not exist, go to the next step. Other-
wise, don’t go to the next step until either fault 1 is fixed if it is severe enough or the features
that have been corrupted by this fault are modified according to this diagnosed fault in the vir-
tual sensor. So,

• Step 2: Do FDD on fault 2. After step 1 has been done, either x1 = 0 (if fault 1 does not exist

or is fixed) or l21 = 0 (after modification according to fault 1) can be guaranteed. So, 

If it exists, fix fault 2 if it is severe enough or otherwise modify the infected features.

• Step i: Do FDD on fault i. After steps 1, 2, ..., i – 1 have been done, either xk = 0 or lik = 0 (for
k < i) is guaranteed. So,

If it exists, fix fault i if it is severe enough or otherwise modify the infected features.

• Step n: Do FDD on fault n. After steps 1, 2, ..., n – 1 have been done, either xk = 0 or lnk = 0

(k < n) is guaranteed. If fault n exists and is severe enough, then fix it: 

DECOUPLING STRATEGY FOR FAULTS IN
VAPOR-COMPRESSION AIR CONDITIONERS

Interactions
As depicted in Figure 3, an air conditioner can be represented as a black box that is driven by

faults, disturbances, and overall system driving conditions, including Taoc, Taie, and φaie, and
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outputs overall system state variables. It is difficult to tell which factors contribute to the current
operation state directly from overall state variables. The SRB method uses normal state models
to predict the normal operation states according to the overall driving conditions, generates
residuals to decouple the interactions between driving conditions and faults, and also uses statis-
tical analysis to further decouple the actions from disturbances but leaves the couplings among
the different faults untouched. This is the reason SRB FDD methods cannot handle multiple
simultaneous faults. 

To handle multiple simultaneous faults, the interactions among different faults should be
decoupled. That is, if one independent feature that is impacted by only one fault can be found for
each individual fault, then multiple simultaneous faults are decoupled. It has been demonstrated
that an infinite number of decoupled-feature sets can be constructed mathematically if detailed
system models are available. Among the infinite number of decoupled-feature sets, some of
them may have no physical meaning while the others may be physically intuitive, and some of
them involve expensive measurements while the others are cost-effectively. However, detailed
system models are expensive, sometimes cost-prohibitive, to develop, so an infinite number of
decoupled-feature sets are difficult to achieve. The contribution of this mathematical derivation
is that it provides a sure guide that decoupling is the key to handle multiple simultaneous faults.
Those with intuitive physical meaning can be identified using an alternative way to a mathemat-
ical transformation, and, therefore, detailed system models are not necessarily entailed. For
HVAC systems, detailed system models are cost-prohibitive, so only those with intuitive physi-
cal meaning and those that are readily available (low-cost) are practical. That is, there is an
important and practical restriction for the independence features. They should be able to be
expressed as functions of low-cost measurements such as temperature and pressure. This section
develops a methodology or guidelines to find these kinds of features. 

Generally speaking, a problem could be approached microscopically or macroscopically or
both to obtain required results with different details. A macroscopic approach uses external and
overall information to interpret the observed phenomenon or predict a coming phenomenon,
while a microscopic approach uses internal and component information to interpret or predict a
phenomenon. In some situations, a macroscopic approach is preferred and unnecessary details

Figure 3. Fault interactions for air-conditioning systems.
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are often ignored to simplify a complicated problem into a manageable one at the cost of losing
some information. For example, statistical thermodynamics considers physical models at the
level of particles while classical thermodynamics focuses on macroscopic and overall behavior
of the particle system. FDD is not an exception: it can be approached either microscopically or
macroscopically. The original SRB method approaches the FDD problem from the overall sys-
tem perspective. It considers the thermodynamic impact of different faults on overall system
state variables and uses overall system models to predict normal operation state variables
according to the overall system driving conditions and then statistically evaluates the overall
system state residuals to do FDD. The merit of this method is that it is simple and systematic,
while the drawback is that it has difficulty handling multiple simultaneous faults and also
depends on components that constitute the system. Multiple simultaneous faults have almost
infinite combinations with different fault types and levels, and each combination has an overall
impact on the overall system behavior. So it is almost impossible to extract so many sys-
tem-level rules to do FDD with multiple simultaneous faults. In addition, system-level rules
depend on the composition or structure of the system. So these two drawbacks are inherent to
the SRB FDD method. Similar to the SRB FDD method, the derivation of the mathematical
decoupling approach is also based on overall system models so, although it leads to an infinite
number of decoupling cases through transformation to handle multiple simultaneous faults, it is
not practical to implement. To overcome these drawbacks, an approach is developed that is
based on individual component modeling and various conceptual or physical decoupling, which
leads to the identification of decoupled features.

Taxonomy of Faults
Taxonomy always is based on and also conversely contributes to the understanding of a sub-

ject. By definition, taxonomy is “the study of the general principles of scientific classification”
according to Merriam-Webster Online (Merriam-Webster 2006). Essentially FDD is a scientific
branch of pattern recognition or classification, so taxonomy is the fundamental of FDD. For the
SRB FDD method, all the faults are treated equally and only the overall impacts of them on the
overall system state variables are discriminated. 

From the macroscopic and overall system point of view, the only discrimination among the
seven faults of refrigerant leakage, compressor valve leakage, condenser fouling, evaporator
fouling, liquid-line restriction, refrigerant overcharge, and noncondensable gas is the directional
change of the overall system state variables’ residuals. However, from microscopic and macro-
scopic points of view, the seven faults considered by the FDD method can be divided into two
classes, component-level and system-level faults, which are shown in Figure 4. The characteris-
tic of component-level faults is that their source impact can be confined to a component, and this
source impact is independent of other faults locally. So, decoupling of component-level faults
can be achieved by investigating their source impacts.

Some faults are introduced during initial installation or service, while some faults develop
during operation. If classified from the view of fault cause, they can be divided into operational
and service faults. If service faults can be detected, diagnosed, and repaired immediately after
installation or service, they will not occur simultaneously with operational faults. Therefore,
coupling between service faults and operational faults can be removed.

In addition, some faults express themselves differently under different operation modes (tran-
sient and steady-state modes), while others are insensitive to operation modes. So, in terms of
fault pattern expression, faults can be divided into mode-sensitive and mode-insensitive faults.
This classification method contributes to FDD development in that some faults can only be
detected and diagnosed in a certain operation mode and some can be detected and diagnosed in
any operation mode but at different costs.
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Some faults can occur simultaneously, while some faults are mutually exclusive. For those
mutually exclusive faults, there is no interaction or coupling among them so they are mutually
decoupled in nature. In terms of fault relationship, faults can be divided into mutually exclusive
and non-exclusive faults.

Compressor valve (or other internal) leakage is a component-level and operational fault.
Although it impacts overall system state variables, such as discharge temperature and condens-
ing temperature, these impacts are indirectly related to a compressor volumetric efficiency
reduction, which is directly impacted by valve leakage. A loss of compressor volumetric effi-
ciency results in a reduction of refrigerant flow rate and increasing specific compressor work,
discharge pressure and temperature, and other changes of system variables, whose direction and
intensity depend on the expansion device used. Physically, this source impact can be confined to
the compressor component. Since a compressor valve is normally damaged when the system is
running, it is classified to be an operational fault.

Condenser fouling (or fan degradation) is also a component-level fault. For an air conditioner,
a direct impact of condenser fouling is the reduction of condenser airflow rate. A reduction of
condenser airflow rate results in a heat transfer penalty that causes changes in state variables,
whose direction and intensity depend on the expansion device used. For example, evaporator
temperature would increase significantly for fixed orifice systems, but it would be almost
unchanged for a thermostatic expansion valve (TXV) system until the fouling became very
severe. A condenser fouling fault develops slowly when the system is running, so it is classified
as an operational fault.

Similar to condenser fouling, evaporator filter and/or coil fouling (or fan degradation) is a
component-level fault. For an air conditioner, a direct impact of evaporator fouling is the reduc-
tion of evaporator airflow rate. The reduction of evaporator airflow rate results in poorer heat
transfer performance and causes changes in state variables, whose direction and intensity also
depend on the expansion device used. For example, condenser temperature would decrease sig-

Figure 4. Taxonomy of air-conditioner faults.
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nificantly for fixed orifice systems, but it would be unchanged for a TXV system until the foul-
ing became severe. Evaporator fouling is classified as an operational fault.

A liquid-line restriction fault often occurs in a dryer or a filter and can be classified as a com-
ponent-level fault. This fault has the direct impact of increasing the pressure and possibly tem-
perature difference between the inlet and outlet of the dryer or filter. The increased pressure
drop also results in a series of changes in state variables, whose direction and intensity are
highly dependent on the expansion device used. For example, for a system with a fixed orifice as
the expansion device, a liquid-line restriction will result in a significant reduction of refrigerant
flow rate, while a moderate liquid-line restriction will not result in a noticeable reduction of
refrigerant flow rate when a TXV is used as the expansion device. This is because a TXV, an
automatic control device, can compensate for an increased pressure drop resulting from a liq-
uid-line restriction by increasing the opening of the TXV. Filter-driers continuously absorb
water and dirt and become restricted over time, so a liquid-line restriction fault is classified as an
operational fault. It has been found that a liquid-line restriction fault demonstrates a different
pattern when the system is operating in transient mode than when operating in steady-state
mode, so it is classified as a mode-sensitive fault.

Low or high refrigerant charge is a system-level fault because it can occur anywhere and its
direct impact cannot be confined to a particular location. Refrigerant overcharge only happens
during service, so it is a service fault. Low refrigerant charge has two possible causes: refriger-
ant is undercharged when service is done or there is a refrigerant leakage. Therefore, low charge
can be a system-level operational or service fault. Low charge and high charge faults cannot
occur simultaneously, so they are mutually exclusive faults.

Since air conditioners are under a positive gauge pressure system when charged, noncondens-
able gases can only be introduced during service. Noncondensable gases tend to accumulate in
the condenser. The primary impact is to increase heat transfer resistance and results in high con-
densing pressures and temperatures. So, noncondensable gas is considered to be a compo-
nent-level service fault. 

In summary, the characteristic of a component-level fault is that its source impact is confined
to a specific location or component and all the other impacts on the system originate from this
source impact. On the contrary, the source impact of a system-level fault cannot be confined to a
specific location or component. Operational faults usually develop during normal running and
occur randomly or gradually, while service faults are introduced with service.

Summary of Decoupling Features for Rooftop Unit System Faults
Based on the above guidelines, Li and Braun (2006) developed decoupling features and vir-

tual sensors for vapor-compression air conditioners. Figure 5 depicts the overall scheme that
provides decoupling among component-level faults, among system-level faults, and between
system-level and component-level faults. The decoupling can be summarized as follows:

• ΔTcond, the condenser temperature residual, is used as a pseudo-decoupling feature for non-
condensable gas; it is the difference between condenser temperature and saturation tempera-
ture corresponding to the condenser pressure when the system is off.

• , the condenser volumetric airflow rate residual, is independent of any faults except
for condenser fouling, so it serves as a decoupling feature for condenser fouling; it is the
difference between the normal value and the estimated value of the condenser volumetric
airflow rate.

• Similar to , , the evaporator volumetric airflow rate residual, is the decoupling fea-
ture for evaporator fouling; it is the difference between the normal value and the estimated
value of the evaporator volumetric airflow rate.

V· caΔ

V· caΔ V· eaΔ
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• ΔTdis, the discharge line temperature residual, is only dependent on compressor valve leakage

fault, so it is used to break the coupling between compressor valve leakage and any other
faults; it is the difference between the measured value and the estimated value from the com-
pressor component model of the discharge line temperature.

• Δ2Pll, the liquid-line pressure drop residual, should be close to zero in a statistical sense

except when there is a restriction in the liquid line and it is a decoupling feature for a
liquid-line restriction.

• Low and high refrigerant charge faults are naturally decoupled because they cannot both exist
at the same time; ΔTsc-sh, the weighed residuals of suction superheat and liquid-line subcool-

ing, is a decoupling feature that depends uniquely on refrigerant charge and is independent of
operating conditions and other faults.

A mathematical description of the decoupling scheme is presented in Equations 10 and 11. In
Equation 10, each element of vector Z is a unique function of a unique fault. Through decou-
pling, the FDD problem has been converted to a series of one-dimensional fault detection prob-
lems. Although the fault diagnosis rules for each fault are straightforward, Equation 10 can be
presented in a linearized form as shown in Equation 11 and the result used in combination with
Equations 7 and 8 to perform FDD according to prescribed statistical thresholds. It is not actu-
ally necessary to perform a linearization. It is only necessary to know the sign of the constants
within Z to perform diagnosis using the decoupling features and Equations 7 and 8. This method
has the advantages of not requiring overall system models and utilizing features that are generic
and system-independent. 

Figure 5. Decoupling scheme for air-conditioner faults.
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(10)

(11)

VALIDATION

Figure 6 depicts different models and their inputs and outputs for the FDD method. The
inputs include both actual measurements (circled symbols) and variables determined from vir-
tual sensors or simple combinations of actual measurements (bare symbols). The outputs are
decoupled features (symbols within shaded ovals) and virtual sensor outputs needed by other
modules. Many of the features and virtual sensors rely on quasi-steady performance.
Quasi-steady state is a condition where the state variables are close to their equilibrium values
for a given set of external driving conditions. A steady-state detector is required for imple-
mentation of this FDD method. 

The FDD method considers important and difficult-to-diagnose faults that impact system
cooling capacity, efficiency, and equipment life as documented by Breuker and Braun (1998),
including faults that degrade compressor flow capacity (e.g., compressor valve leakage), low or
high refrigerant charge (leakage or inadequate charging during service), air-side fouling or loss
of flow for the condenser or evaporator, liquid-line restriction (e.g., filter/dryer clogging), and
presence of a noncondensable gas.   

For the evaluations in this paper, the FDD method was applied in a post-processing mode
after data were collected. The combination of slope and variance methods (Li and Braun 2003)
was used to determine quasi-steady conditions for the data sets that were obtained. In addition to
the measurements shown in Figure 6 (circled symbols), compressor power was measured for the
purpose of evaluating fault impact. Cooling capacity was calculated from measured states and a
virtual sensor for refrigerant flow (see Li and Braun [2006]). Only the steady-state method for
liquid-line restriction faults was employed as described by Li and Braun (2006). Improved FDD
performance for this fault would undoubtedly be achieved using the transient method of Li and
Braun (2006). However, this method was not available at the time testing was performed and
therefore no transient data are available. In addition, noncondensable gas faults were not consid-
ered. A simple diagnostic classifier was employed with a normalized fault indicator defined as
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where INDfaultname denotes the decoupling fault feature for a given fault (faultname), fvcurrent
denotes the current feature value, and fvrange is a predefined range of interest for the feature
value. For results presented in this paper, fvrange was chosen as the feature value at an individual
fault level causing approximately a 20% cooling capacity degradation. FDD thresholds for the
normalized indicators were at 0.2 (i.e., approximately 4% capacity degradation). The method
can generally diagnose faults at lower levels, but at lower levels the fault impact is thought to be
insignificant. Table 2 summarizes values for fvrange that were employed in this study. 

FDD SENSITIVITY AND ROBUSTNESS
A 5-ton rooftop unit having a SEER of about 11 was installed at Purdue University to evalu-

ate performance of the FDD method. This unit uses a TXV as the expansion device and has a
fixed-speed, hermetically sealed scroll compressor. The evaporator blower uses a direct-drive
motor with three speed options (nominal flow rate is 2000 cfm for the middle speed option),
while the condenser fan is single-speed with a nominal flow rate of 4500 cfm. The condenser
has five parallel condensing circuits and one subcooling circuit, while the evaporator is com-
posed of seven parallel evaporating circuits. The standard system charge is 9 lb, 8 oz R-22. The
measurements used for FDD tests are:

INDfaul tname

fvcurrent

fvrange
--------------------  ,=

Figure 6. FDD modules and their inputs and outputs.
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• Temperature measurements: evaporating temperature, suction line temperature, discharge line
temperature, condensing temperature, liquid-line temperatures before and after filter/drier
temperature, expansion device downstream temperature, air temperatures of the condenser
inlet and outlet, and dry-bulb temperature and relative humidity of the mixed air. 

• Refrigerant pressure measurements: suction line pressure and discharge line pressure for the
compressor.

• Power transducer to measure power consumption of the compressor.

Table 3 tabulates the method of implementing faults and corresponding fault levels simulated.
Six faults were implemented in the Purdue field site: compressor valve leakage (CompLeak),
condenser fouling (CondFoul), evaporator fouling (EvapFoul), liquid-line restriction (LLRestr),
refrigerant undercharge (RefLow), and refrigerant over charge (RefHigh). Five fault levels were
introduced for refrigerant charge and compressor leakage faults, and four fault levels were intro-
duced for the other three faults. Since tests were performed in a field setting, the driving condi-
tions were uncontrollable. Typically, they were conducted in the afternoon (from around
1:30 p.m. to 8:00 p.m.) when there was no direct solar radiation striking the condenser or its air
outlet sensors. Most of the tests were performed in the summer and fall of 2003, and some of
them were conducted in the spring of 2004.

Sensitivity
The sensitivity of the FDD technique is defined as the lowest fault level introduced to the sys-

tem that could be successfully detected and diagnosed (the diagnostic thresholds of Table 2 were
not employed). Below these levels, the FDD method could not reliably diagnosis faults. Since
there are infinite combinations of multiple faults with different fault levels, sensitivity was only

Table 2. Predefined Feature Values and FDD Thresholds

Fault Name CompLeak CondFoul EvapFoul LLRestr RefLow RefHigh

Feature ΔTdis ΔTsc–sh ΔTsc–sh

fvrange 8.3 (°C) 4.4 (bar) 5.6 (°C) 5.6 (°C)

Threshold 0.2 0.2 0.2 0.2 0.2 –0.2

Table 3. Method of Implementing Faults and Corresponding Fault Levels Simulated

Fault
Fault Introduction

Method
Fault Level
Expression

Fault Level Simulated

0 1 2 3 4 5

CompLeak
Partially open a bypass 

valve between discharge 
and suction lines

% refrigerant mass      
flow rate bypass

0% 8% 18% 33% 44% 56%

CondFoul
Partially block condenser 

airflow with paper
% reduction of air 
volume flow rate

0% 3% 10% 13% 16% N/A

EvapFoul
Partially block evaporator 

airflow with paper
% reduction of air 
volume flow rate

0% 5% 9% 16% 31% N/A

LLRestr
Partially close the needle 
valve on the liquid line

% of the pressure drop 
from high to low sides

0% 5% 10% 13% 19% N/A

RefLow Undercharge the system % reduction of charge 0% 11% 16% 21% 26% 32%

RefHigh Overcharge the system % increase of charge 0% 11% 16% 21% 26% 32%

V· caΔ V· eaΔ P
2

l lΔ

0.25V· ca ,set ting 0.25V· ea ,set ting
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evaluated for individual faults. The implementation of each fault at different levels of Table 3
took from three to four hours in a single afternoon and driving conditions changed. However,
there were no drastic changes in temperature and humidity. Therefore, although sensitivities in
terms of physical level were stable, sensitivities in terms of performance degradation may have
small variations due to the effects of driving conditions.

Table 4 summarizes the FDD sensitivity results. The levels at which faults could be diagnosed
are expressed in several different ways: (1) fault level (from Table 3), (2) physical level (from
Table 3 definitions), (3) percent degradation in unit cooling capacity, (4) percent degradation in
unit EER, and (5) percent degradation in unit sensible heat ratio (SHR). Since the fault levels
were introduced at discrete levels, the first level represents the best possible sensitivity for these
tests. The method could detect low refrigerant charge and loss of compressor performance at the
lowest levels introduced and all other faults at the second level. All of the faults could be reli-
ably diagnosed before a 5% degradation in capacity, EER, or SHR.

False alarm is an indication of a fault when in actuality a fault has not occurred. For a given
technique, there is an inherent trade-off between minimizing the false alarms and maximizing sen-
sitivity. Table 5 lists the theoretical false alarm rates calculated from the fault indicator standard
deviation at the FDD thresholds. Except for the liquid-line restriction, the faults had very small
false alarm rates. Since the sensitivity of liquid-line restriction is high, it seems that there is some
potential to reduce its false alarm rate by means of raising the FDD threshold. However, robustness
tests show that it is impractical to raise the FDD threshold for the liquid-line restriciton.

Robustness

To verify robustness, multiple simultaneous fault combinations of six faults were consid-
ered. Only one fault level was implemented for each combination because there are infinite
combinations if fault level is considered. Except for compressor leakage, the faults were imple-
mented at the levels between the first diagnosed and next levels (see Table 6). Compressor
leakage was implemented at different and relatively high fault levels because (1) a compressor
leakage fault is completely decoupled from the other faults and has the highest robustness

Table 4. FDD Sensitivity for Individual Faults

Fault
Simulated

Level
Physical

Level
Capacity 

Degradation
EER 

Degradation
SHR

Degradation

CompLeak 1st 8% 5% 3% –3%

CondFoul 2nd 10% 3% 4% 0%

EvapFoul 2nd 9% 5% 4% 4%

LLRestr 2nd 10% 3% 1% 2%

RefLow 1st 11% 3% 1% 5%

RefHigh 2nd 16% 2% 2% 0%

Table 5. Fault Indicator Standard Deviations of
Normal Operations and False Alarm Rates

Fault Name CompLeak CondFoul EvapFoul LLRestr RefLow RefHigh

FDD Threshold 0.2 0.2 0.2 0.2 0.2 –0.2

Standard Deviation 0.072 0.074 0.091 0.133 0.066 0.066

False Alarm Rate 0.003 0.004 0.014 0.067 0.005 0.005
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Table 6. Individual Fault Levels Implemented for Multiple Simultaneous Fault Tests

Test 
No.

CompLeak CondFoul EvapFoul LLRestr RefLow RefHigh
Capacity

Degradation
EER   

Degradation
SHR 

Degradation 

1 27% 0 0 0 14% 0 28% 19% –6%

2 27% 11% 0 0 14% 0 31% 25% –9%

3 25% 11% 12% 0 11% 0 25% 20% –6%

4 25% 11% 12% 12% 11% 0 27% 22% –4%

5 0 11% 12% 12% 11% 0 9% 12% 14%

6 0 0 12% 12% 11% 0 5% 4% 12%

7 0 0 0 12% 14% 0 5% 0% 10%

8 29% 0 0 12% 14% 0 30% 21% –6%

9 25% 0 12% 12% 11% 0 26% 17% –2%

10 25% 0 12% 0 11% 0 25% 17% 0%

11 0 0 12% 0 11% 0 4% 1% 10%

12 0 11% 12% 0 11% 0 5% 9% 8%

13 0 11% 0 0 14% 0 6% 7% 4%

14 0 11% 0 12% 14% 0 6% 6% 10%

15 29% 11% 0 12% 14% 0 29% 23% –7%

16 32% 11% 0 0 0 0 34% 28% –18%

17 21% 11% 12% 0 0 0 25% 21% –2%

18 21% 11% 12% 12% 0 0 21% 17% –3%

19 0 11% 12% 12% 0 0 6% 10% 9%

20 0 0 12% 12% 0 0 1% 0% 8%

21 19% 0 12% 12% 0 0 21% 14% –2%

22 32% 0 0 12% 0 0 33% 24% –15%

23 0 11% 0 12% 0 0 -3% 4% 2%

24 32% 11% 0 12% 0 0 28% 25% –15%

25 0 11% 12% 0 0 0 6% 10% 6%

26 19% 0 12% 0 0 0 20% 13% –5%

27 33% 0 0 0 0 21% 30% 23% –16%

28 32% 11% 0 0 0 21% 28% 24% –17%

29 35% 11% 16% 0 0 21% 39% 35% –9%

30 35% 11% 16% 12% 0 21% 36% 33% –9%

31 0 11% 16% 12% 0 21% 8% 15% 8%

32 0 0 16% 12% 0 21% 7% 8% 9%

33 0 0 0 12% 0 21% –3% –1% 0%

34 32% 0 0 12% 0 21% 32% 25% –13%

35 35% 0 16% 12% 0 21% 38% 31% –6%

36 35% 0 16% 0 0 21% 38% 31% –7%

37 0 0 16% 0 0 21% 7% 8% 8%

38 0 11% 16% 0 0 21% 8% 15% 7%

39 0 11% 0 0 0 21% 3% 10% –1%

40 0 11% 0 12% 0 21% 3% 11% 1%

41 32% 11% 0 12% 0 21% 34% 31% –16%
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while other faults are unilaterally decoupled from it, (2) various compressor leakage faults are
required to test the fault evaluation algorithm, and (3) high levels of compressor leakage faults
are better for robustness tests of other faults. Fault levels of condenser fouling, liquid-line
restriction, and refrigerant overcharge were fixed, while two fault levels of low refrigerant
charge and evaporator fouling were simulated and compressor leakage fault levels ranged from
20% to 35%. Since refrigerant charge faults are mutually exclusive, the total number of combi-
nations is the sum of those at low charge, 

and high charge, 

All 41 combinations with individual fault levels implemented are listed in Table 6. All of the
possible 41 combinations were considered. For reference, indicators for the different faults are
given in Table 7. Figure 7 shows the different combinations of faults implemented for the 41 dif-
ferent cases and also shows differences between binary indicators (1 = fault, 0 = no fault) for
individual diagnosed and implemented faults. A −1 denotes a missed diagnosis or sensitivity
loss for one fault and a 1 denotes a false alarm. There were and two missed diagnoses (lost sen-
sitivity) two false alarms for combinations with a liquid-line restriction. As previously noted,
only the steady-state method presented by Li and Braun (2006) was employed for liquid-line
restriction. It is expected that the and missed diagnoses false alarms would be eliminated using
the transient method of Li and Braun (2006). 

In order to quantify the robustness, a normalized indicator error, ρi, is defined as

where i is the individual fault name, INDi,SF is the fault indictor of fault i occurring individ-
ually, INDi,MSF is the fault indicator of fault i occurring simultaneously with other faults,
and INDi,threshold is the FDD threshold of fault i. Table 8 summarizes meanings of ρi for dif-
ferent cases.

Table 7. Fault Indicators for the Different Faults

Fault CompLeak CondFoul EvapFoul LLRestr RefLow RefHigh

Indicator Number 1 2 3 4 5 6

Table 8. Normalized Fault Indicator Error and Its Meaning

Case
When it is Normal When it is Faulty

RefHigh

OK

False alarm False alarm Sensitivity gain
Wrong 

Diagnosis

RefLow False alarm False alarm
Wrong 

Diagnosis
Sensitivity gain

Other Faults OK False alarm Sensitivity loss Sensitivity gain

ρi 1<
ρi 1–≤ ρi 1≥ ρi 1–≤ ρi 1≥
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Figure 8 plots the normalized fault indicator error for compressor leakage. It can be seen that
there were no false alarms or sensitivity losses or gains. The normalized fault indicator error is
much smaller for faulty operation than for normal operation, meaning that the fault indicator has
very good robustness against noise and uncertainties and high sensitivity to faults. For faulty
operation, the noise and uncertainties are suppressed by high sensitivity, meaning that it is less
likely to have sensitivity loss for faulty operation. This confirms the prior theoretical analysis:
compressor valve leakage fault is completely decoupled from the other faults.

Figure 7. Robustness tests for multiple simultaneous FDD.

Figure 8. FDD robustness for compressor leakage.
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The normalized fault indicator error for condenser fouling fault is given in Figure 9. It can be
seen that all the points are within the robustness boundaries and there is no obvious difference in
robustness between normal operation and faulty operation. Although there were no false alarms
or sensitivity losses, robustness was not as good as for compressor valve leakage. There are two
factors that affect condenser fouling robustness: refrigerant mass flow rate estimation and con-
denser outlet refrigerant enthalpy estimation. It seems that the compressor model and refrigerant
mass flow rate correction algorithm have good performance. Theoretical analysis shows that if
the condenser outlet refrigerant quality is larger than 0.1, the relative error in enthalpy estima-
tion is less than 5%. If the refrigerant charge is more than 50% of the nominal value, the con-
denser outlet refrigerant quality will not be less than 0.1. 

In Figure 10, the normalized fault indicator error for evaporator fouling is plotted. It can be
seen that there is one point that is out of the range of the robustness boundaries and three points
that are marginally within the boundaries. However, the point outside the lower boundary does

Figure 9. FDD robustness for condenser fouling.

Figure 10. FDD robustness for evaporator fouling.
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operate normally, so it will not cause any sensitivity loss. Overall, robustness for evaporator
fouling was not as good as for compressor leakage and condenser fouling, but there were no
false alarms or sensitivity losses. Three factors affect evaporator fouling robustness: refrigerant
mass flow rate estimation, condenser outlet refrigerant enthalpy estimation, and evaporator out-
let air enthalpy estimation. Since there is no humidity sensor for evaporator outlet air, its
enthalpy is estimated using a virtual sensor, which adds some additional noise and uncertainty.

The normalized liquid-line restriction fault indicator error is shown in Figure 11. It can be
seen that there are six points that are out of the robustness boundaries. Two of them operating
normally are outside of the upper boundary and cause false alarms. Another two operating
abnormally are outside of the lower boundary and cause sensitivity losses. The other two of
them operating abnormally are outside the upper boundary and cause sensitivity gain. There are
three points that are marginally within the boundary.

The reason for worse robustness is that more uncertainties are introduced: (1) refrigerant mass
flow rate estimation, (2) condenser outlet refrigerant pressure estimation, and (3) estimation of
pressure drop across the TXV. Pressure drop across the TXV is estimated using a TXV model
that is sensitive to superheat measurement noise and refrigerant mass flow rate estimation. In
addition, when the operation is out of the control range of the TXV, the TXV model will not
have good performance. There are two situations where this will occur: (1) when the refrigerant
charge is lower than a certain value, the TXV is saturated and will cause abnormally high super-
heat, and (2) when there is a compressor leakage fault, the evaporating pressure may be high
enough to trigger the TXV maximum operation pressure. In addition to more uncertainties, the
pressure drop across the clogged filter/drier itself varies according to refrigerant mass flow rate
and refrigerant state even for the same physical fault level. As previously noted, it is expected
that the false alarms and missed diagnoses would be eliminated if the transient method of Li and
Braun (2006) were employed for liquid-line restriction faults.

The normalized fault indicator error for both refrigerant low and high charges is plotted in
Figure 12. The binary fault indicator indicates undercharge by 1, nominal/normal charge by 0,
and overcharge by –1. For the refrigerant low charge fault, there are three points that are outside
the upper boundary, which indicates sensitivity gain, and there were no wrong diagnoses or sen-

Figure 11. FDD robustness for liquid-line restriction.
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sitivity losses. When the refrigerant is normally charged and overcharged, all the test points are
within the robustness boundaries and there are no false alarms or sensitivity losses. 

Table 6 tabulates all fault impacts for the different tests in terms of performance degradations
in capacity, EER, and SHR. Some combinations of faults cause very significant performance
impacts, therefore service would be justified. Generally, faults have a more significant effect on
capacity than EER. The impact on SHR is even less than that on EER. However, in some cases
faults increase latent removal (reduced SHR), which leads to increased cooling loads and greater
operating costs. On the other hand, an increased SHR could lead to comfort problems.

CONCLUSIONS AND DISCUSSION

One of the unique and primary contributions of this paper is a mathematical framework for
decoupling faults within the context of model-based diagnostic approaches. This framework
provided a strong tool for development of a specific FDD approach for vapor-compression
equipment that could handle multiple simultaneous faults. This problem had not been previously
solved in a practical manner. However, the methodology is general and could be applied to a
variety of different systems and FDD problems. The primary difficulty in attacking new prob-
lems is in identifying decoupling features that work well and are practical in terms of cost and
implementation. The development for vapor-compression equipment relied heavily on the
development of virtual sensors to reduce costs. In addition, the decoupling schemes included the
use of simplified mathematical and non-mathematical decoupling approaches. 

Decoupling based solely on mathematical transformation requires complicated and expensive
system models and is not practical for noncritical applications. Casting the SRB FDD method
within the context of the general mathematical framework led to an important incitement that
significantly reduced the modeling requirements: it is only necessary to characterize the direc-
tional change in decoupling features in order to perform diagnostics. As a result, it is not neces-
sary to have models that explicitly relate decoupled features to both operating conditions and
faults—it is only necessary to have models that relate decoupled features for normal operating
equipment to operating conditions and to have knowledge about the directional change in these
features with faults. This requirement for mathematical decoupling is much less stringent and
allows the use of much simpler models for decoupling features. 

Figure 12. FDD robustness for refrigerant low and high charge faults.
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Non-mathematical decoupling relies on an understanding of the physical system and service
processes to decouple faults. For instance, some combinations of faults cannot possibly occur
simultaneously (e.g., low and high refrigerant charges) and are naturally decoupled. Other faults
can be decoupled based on how and/or when they occur. For example, introduction of a noncon-
densable gas or overcharging of refrigerant can only occur when the unit is serviced. As a result,
additional measurements and techniques available to a service technician can be employed to
diagnose these faults after initial service has been performed. 

Based on the decoupling features and virtual sensors proposed by Li and Braun (2006), the
proposed decoupling-based FDD method was implemented for vapor-compression systems.
Faults were artificially introduced into a rooftop air conditioner at different levels in order to
evaluate sensitivity and robustness of the method. Sensitivity tests showed that all of the individ-
ual faults can be identified before they cause 5% of degradation in cooling capacity, EER, and
SHR. Robustness tests of 41 multiple simultaneous fault combinations showed that no wrong
diagnosis occurred, with only two false alarms and sensitivity losses for a liquid-line restriction.
The method presented in this paper was developed and validated for simple vapor-compression
systems having fixed-speed fans and on/off compressor control. However, it can be readily
extended to equipment having multiple stages of compression and fan speeds following the
approach utilized in this work.
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NOMENCLATURE
α = false alarm threshold
CompLeak = compressor valve leakage
CondFoul = condenser fouling
Δ2Pll = liquid-line filter/drier pressure

difference residual
ΔTca = condenser air temperature 

difference
ΔTcond = condensing temperature residual
ΔTdis = discharge line temperature residual
ΔTea = evaporator air temperature 

difference
ΔTll = temperature difference across the 

liquid-line filter-drier
ΔTsc-sh = refrigerant charge diagnosis feature

= condenser air volume flow residual
= evaporator air volume flow residual

EvapFoul = evaporator fouling
FDD = fault detection and diagnosis
J = Jacobi matrix
ksc = slope of refrigerant charge vs. 

liquid-line subcooling 
ksh = slope of refrigerant charge vs. 

suction line superheat
χref = refrigerant quality
χ2(n) = chi-square distribution
(χ2)–1{,} = inverse of the chi-square 

cumulative distribution function
LLRestr = liquid-line restriction

= transformed diagonal matrix 
Mnormal = mean vector of normal operation 

residuals
= refrigerant mass flow rate

ωi = fault class i
P = transform matrix
Pdis = discharge pressure
Pll = liquid-line pressure
Psat = saturated pressure
Psuc = suction pressure
Px = Expansion device upstream

refrigerant temperature
φaie = evaporator inlet air relative 

humidity 
RefLeak = refrigerant leakage
RefLow = refrigerant low charge
RefHigh = refrigerant high charge
sign_stat( ) = signum operation function
σi,normal = normal operation standard 

deviation for variable i
Σnormal = covariance matrix for normal 

operation residuals
Taic = condenser inlet air temperature
Taie = evaporator inlet air temperature
Tcond = condensing temperature
Tdis = discharge line temperature
Tevap = evaporating temperature

V· caΔ
V· eaΔ

Λ

m· ref
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Tsh = superheat 
Tsc = subcooling 
Tsuc = suction line temperature
Tx = expansion device upstream

refrigerant pressure

X = fault vector
Y = residual vector
Z = transformed feature vector
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