Chemical Engineering & Process Techniques

Research Article

Sustainable Operations for Distillation Columns

Yaşar Demirel *

Department of Chemical and Biomolecular Engineering, University of Nebraska Lincoln, USA

Abstract

Distillation process consumes about 40% of the total energy used to operate the plants in petrochemical and chemical process industries in North America. Therefore, sustainable distillation column operation requires responsible use of energy and reduction of harmful emission such as CO2. The Aspen Plus 'Column Targeting Tool' (CTT) options in a simulation environment can help reduce the use of energy and hence CO₂ emission. The Aspen plus 'Carbon Tracking' (CT) together with the 'Global Warming Potential' options can quantify the reduction in $\rm CO_2$ emission. The CTT is based on the practical near-minimum thermodynamic condition approximation and exploits the capabilities for thermal and hydraulic analyses of distillation columns to identify the targets for possible column modifications. By using the 'CO₂ emission factor data source' and fuel type, the CT estimates the total CO₂ emission and net carbon fee/tax in the use of utility such as steam. A comparative assessment with the sustainability metrics displays the usage of energy, emission of CO₂, and cost before and after the distillation column modifications. This study comprises both an interactive and araphically-oriented case study with simulation tool and sustainability metrics for quantifying the reduction in the energy consumption and CO₂ emission in distillation column operations.

INTRODUCTION

The U.S. Department of Energy estimates that there are more than 40,000 distillation columns consuming about 40% of the total energy used to operate the plants in petrochemical and chemical process industries in North America [1,2]. A typical distillation column resembles a heat engine delivering separation work by using heat at a high temperature in the reboiler and discharging most of it to the environment at a lower temperature in the condenser [3]. Aspen Plus 'Column Targeting Tool' (CTT) is based on the Practical Near-Minimum Thermodynamic Condition (PNMTC) approximation representing a practical and close to reversible operation [4-9]. It exploits the capabilities for thermal and hydraulic analyses of distillation columns to identify the targets for possible column modifications in: 1) stage feed location, 2) reflux ratio, 3) feed conditioning, and 4) side condensing and/or reboiling. These modifications can reduce the utility usage and improve energy efficiency.

The options of CTT can help reduce the use of energy, while the 'Carbon Tracking' (CT) and Global Warming Potential options can help quantify the reduction in CO_2 emission in a simulation environment. If nonrenewable and limited, energy usage affects environment through the emission of pollutants such as CO_2 . Sustainability has environmental, economic, and social dimensions and requires the responsible use of resources such as energy and reduction in CO_2 emission. The three intersecting

*Corresponding author

Yaşar Demirel, Department of Chemical and Bimolecular Engineering, University of Nebraska Lincoln, Lincoln 68588, USA, Email: ydemirel2@unl.edu

Submitted: 17 July 2013

Accepted: 07 August 2013

Published: 09 August 2013

Copyright

© 2013 Demirel

OPEN ACCESS

Keywords

- Sustainability metrics
- Distillation column
- Column targeting tool
- Column grand composite curves
- Carbon tracking; Global warming potential

dimensions illustrate sustainability metrics (3D) that include material use, (nonrenewable) energy use, and toxic and pollutant emissions [10-14]. In this study, the energy and CO_2 emission as the pollutant are used as the sustainability metrics in distillation column operations. This study demonstrates how to reduce and quantify the energy consumption and CO_2 emissions with the sustainability metrics in distillation column operations.

MATERIALS AND METHODS

Sustainability

'Sustainability is maintaining or improving the material and social conditions for human health and the environment over time without exceeding the ecological capabilities that support them [6]'. The dimensions of sustainability are economic, environmental, and societal (Figure 1). The Center for Waste Reduction Technologies (CWRT) of the American Institute of Chemical Engineers (AIChE) and the Institution of Chemical Engineers (IChemE) proposed a set of sustainability metrics that are quantifiable and applicable to a specific process [15,16]

- Material intensity (nonrenewable resources of raw materials, solvents/unit mass of products)
- Energy intensity (nonrenewable energy/unit mass of products)
- Potential environmental impact (pollutants and

emissions/unit mass of products)

Potential chemical risk (toxic emissions/unit mass of products)

The first two metrics are associated with the process operation. The remaining two metrics represent chemical risk to human health in the process environment, and the potential environmental impact of the process on the surrounding environment. For distillation column operations, this study uses a comparative assessment with the sustainability metrics of:

- 'Energy intensity' as nonrenewable energy/unit mass of products by using 'Column Targeting Tool.'
- 'Potential environmental impact' as emissions and cost/ unit mass of products by using 'Carbon Tracking' and 'Global Warming Potential' options of the Aspen Plus simulator.

Column targeting tool

The Column Targeting Tool (CTT) of Aspen Plus is a conceptual design tool for lowering cost of operation through modified operating conditions, and providing insight into understanding tray/packing capacity limitations. The CTT is based on the

Practical Near-Minimum Thermodynamic Condition (PNMTC) representing a close to practical reversible column operation [10]. For RadFrac, MultiFrac, and PetroFrac column models, the CTT performs thermal, exergy, and hydraulic analyses capabilities that can help identify the targets for appropriate column modifications in order to [7,14,17].

- Reduce utilities cost
- Improve energy efficiency
- Reduce capital cost by improving thermodynamic driving forces
- Facilitate column debottlenecking

The CTT can be activated by using the corresponding option on the Analysis / Analysis Options sheets, as shown in (Table 1). Results of the column targeting analysis depend strongly on the selection of light key and heavy key components in Targeting Options (Table 2) [7]. Before designating light key and heavy components for the column (see Table 3), the user runs the simulation and inspects the column split-fractions, composition profiles, and component K-values displayed by the 'Plot Wizard.' If there is more than one light key. In case of multiple heavy key components, the lightest is selected as the heavy key. In the default method, key components are selected based on the component K-values. The CTT has a built-in capability to select light and heavy key components for each stage of the column [7].

Thermal analysis

Thermal analysis capability is useful in identifying design targets for improvements in energy consumption and efficiency [7,11-14,18-20]. In this capability the reboiling and condensing loads are distributed over the temperature range of operation of the column. The thermal analysis of CTT produces 'Column

Method	Use When
User defined	Allows you to specify the light key and heavy key components.
Based on component split- fractions	This method is best for sharp or near-sharp splits fractions in product streams.
Based on component K-values	This method is best for sloppy splits.
Based on column composition profiles	In principle, this method is similar to the K-value based method. It is best suited for sloppy splits and it is, in general, inferior to the K-value based method

Table 3: Selection of key components within the 'Targeting Options' [7].

Grand Composite Curves' (CGCC) and 'Exergy Lost Profiles.' The user makes changes to column specifications until the profiles look right based on the column targeting methodology. The CGCCs are displayed as the stage-enthalpy (Stage-H) or temperature-enthalpy (T-H) profiles. They represent the theoretical minimum heating and cooling requirements in the temperature range of separation. This approximation takes into account the inefficiencies introduced through column design and operation, such as pressure drops, multiple side-products, and side strippers. The CGCCs are helpful in identifying the targets for potential column modifications for

- 1. Feed stage location (appropriate placement)
- 2. Reflux ratio modification (reflux ratio vs. number of stages)
- 3. Feed conditioning (heating or cooling)
- 4. Side condensing or reboiling (adding side heater and/or cooler)

The equations for equilibrium and operating lines are solved simultaneously at each stage for specified light key and heavy key components. Using the equilibrium compositions of light L and heavy H key components the enthalpies for the minimum vapor and liquid flows are obtained by

$$H_{\rm Vmin} = H_V^* \left(\frac{V_{\rm min}}{V^*}\right); \ H_{\rm Lmin} = H_L^* \left(\frac{L_{\rm min}}{L^*}\right) \tag{1}$$

where V^* and L^* are the molar flows of equilibrium, H_V^* and H_L^* are the enthalpies of equilibrium vapor and liquid streams leaving the same stage, respectively, and the minimum vapor and liquid flow rates leaving the same stage with the same temperatures can be estimated by [13,14,18-20]

$$V_{\min} = \frac{1}{y_L^*} (D_L + L_{\min} x_L^*); \ L_{\min} = \frac{1}{x_H^*} (V_{\min} y_H^* - D_H)$$
(2)

From the enthalpy balances at each stage, the net enthalpy deficits are obtained by

$$H_{\text{def}} = H_{\text{Lmin}} - H_{\text{Vmin}} + H_D \quad \text{(Before the feed stage)} \tag{3}$$

$$H_{\text{def}} = H_{\text{Lmin}} - H_{\text{Vmin}} + H_D - H_{\text{feed}}$$
 (After the feed stage) (4)

After adding the individual stage enthalpy deficits to the condenser duty, the enthalpy values are cascaded, and plotted in the CGCC. This is called the top-down calculation procedure. At the feed stage, mass and energy balances differ from an internal stage and the enthalpy deficit at the feed stage becomes

$$H_{\text{def},F} = Q_C + D[H_D + H_L(x_D - y_F^*) / (y_F^* - x_F^*) - H_V(x_D - x_F^*) / (y_F^* - x_F^*)]$$
(5)

The values of y_F^* and x_F^* may be obtained from an adiabatic flash for a single phase feed, or from the constant relative volatility estimated with the converged compositions at the feed stage and feed quality. This procedure can be reformulated for multiple feeds and side products as well as different choices of the key components. In a CGCC, a pinch point near the feed stage occurs for nearly binary ideal mixtures. However, for nonideal multicomponent systems pinch may exist in rectifying and stripping sections. Exergy (*Ex*) is defined the maximum amount of work that may be performed theoretically by bringing a resource into equilibrium with its surrounding through a reversible process.

$$Ex = \Delta H - T_o \Delta S \tag{6}$$

Where *H* and *S* are the enthalpy and entropy, respectively, and T_o is the reference temperature, which is usually assumed as the environmental temperature of 298.15 K. A part of accessible work potential is always lost in any real process. Exergy losses (destructions) represent inefficient use of available energy due to irreversibility, and should be reduced by suitable modifications [11,12,17]. Exergy balance for a steady state system is

$$\sum_{\substack{\text{nto}\\\text{system}}} \left[\dot{n}Ex + \dot{Q} \left(1 - \frac{T_o}{T_s} \right) + \dot{W}_s \right] - \sum_{\substack{\text{out of}\\\text{system}}} \left[\dot{n}Ex + \dot{Q} \left(1 - \frac{T_o}{T_s} \right) + \dot{W}_s \right] = \dot{E}x_{\text{loss}} (7)$$

Where \dot{W}_s is the shaft work? As the exergy loss increases, the net heat duty has to increase to enable the column to achieve a required separation. Consequently, smaller exergy loss means less waste energy. The exergy profiles are plotted as state-exergy loss or temperature-exergy loss. In general, the exergy loss profiles can be used as a tool to examine the degradation of accessible work due to [7,11,12].

- Momentum loss (pressure driving force)
- Thermal loss (temperature driving force)
- Chemical potential loss (mass transfer driving force)

Hydraulic analysis

Tray or packing rating information for the entire column is necessary to activate the hydraulic analysis. In addition, allowable flooding factors (as fraction of total flooding) for flooding limit calculations can be specified. Hydraulic analysis helps identify the allowable limit for vapor flooding on the Tray Rating Design/ Pdrop or Pack Rating|Design/Pdrop sheets. The default values are 85% for the vapor flooding limit and 50% for the liquid flooding limit. The liquid flooding limit specification is available only if the down comer geometry is specified. The allowable limit for liquid flooding (due to down comer backup) can be specified on the Tray Rating|Downcomers sheet [7,13,14]. The hydraulic analysis capability helps understand how the vapor and liquid flow rates in a column compare with the minimum (corresponding to the PNMTC) and maximum (corresponding to flooding) limits. For packed and tray columns, jet flooding controls the calculation of vapor flooding limits. For tray columns, parameters such as downcomer backup control the liquid flooding limits. Hydraulic analysis produces plots for flow rates versus stage and can be

used to identify and eliminate column bottlenecks [7]. Graphical and tabular profiles (Table 4) help identifying targets and analysis for possible modifications by the user. The 'Plot Wizard' (Figure 2) produces various plots including the types:

- Thermal analysis: The CGCC (T-H) Temperature versus Enthalpy
- Thermal analysis: The CGCC (S-H) Stage versus Enthalpy
- Hydraulics analysis: Thermodynamic Ideal Minimum Flow, Hydraulic Maximum Flow, Actual Flow
- Exergy loss profiles: Stage versus Exergy Loss or Temperature versus Exergy Loss

RESULTS AND DISCUSSIONS

Sustainable column operation is illustrated in the following example using a RADFRAC column (Figure 3), which will be the

base case. The input summary showing the feed flow rate, feed composition, column configuration, and utility bloc definitions are given below.

COMPONENTS: C2H6 C2H6 / C3H8 C3H8 / C4H10-1 C4H10-1 / C5H12-1 C5H12-1 / C6H14-1 C6H14-1 / WATER H20 PROP-ERTIES RK-SOAVE STREAM FEED: TEMP=225°F PRES=250 psia; MOLE-FLOW C2H6 30 / C3H8 200 / C4H10-1 370 / C5H12-1 350 / C6H14-1 50 lbmol/hr BLOCK RADFRAC RADFRAC: NSTAGE=14;CONDENSER=PARTIAL-V; FEED 4 PRODUCTS BOT 14 L / DIS 1 V; P-SPEC 1 248 psia COL-SPECS D:F=.226 MOLE DP-COL=4 MOLE-RR=6.06 TRAY-SIZE 1 2 13 SIEVE , TRAY-RATE 1 2 13 SIEVE DIAM=5.5 ft UTILITIES COND-UTIL=CW REB-UTIL=STEAM UTILITY Water; COST = 0.05 \$/ton ; PRES=20. PRES-OUT=20. psia; TIN=50. TOUT=75. F UTILITY STEAM; COST =6. \$/ton ; STEAM HEATING-VALU=850.0 Btu/lb CALCCO2=YES FACTORSOURCE="US-EPA-Rule-E9-5711" FUELSOURCE= "Natural gas" CO2FACTOR=1.3000000E-4

All Items 🔹	TPFQ	Compositions	<-Values I	Hydraulic	s Reaction	ns Efficiencie	s Properties	Key Components	Thermal Analysis	Hydraulic Analysis
👩 Report	Column	n targeting results –							22	
Rate-based Report Image: Construction of the second	Sta	age Temperature	e Pressu	ıre	Enthalpy deficit	Exergy loss	Carnot factor	Real enthalpy * deficit		
👩 User Transport Subi		F .	- psia	→ Bt	tu/hr 👻	Btu/hr 🔫		Btu/hr 👻		
🥑 Generalized Transp 💿 Dynamic	1	119.535	248	8.1	l8357e+06	87972	0.0734365	8.18357e+06		
Oynamic Equipmer	2	133.599	248.308	7.5	7413e+06	157914	0.0954015	0		
Block Options	3	148.873	248.615	6.9	8042e+06	160251	0.118107	0		
Results	4	165.835	248.923	6.1	l6405e+06	149725	0.142021	0		
Interface Profiles	5	182.899	249.231	5.0)2573e+06	128305	0.164806	0		
Efficiencies and HE	6	199.526	249.538	3.5	8883e+06	134743	0.185872	0		
Transfer Coefficient	7	215.045	249.846	2.7	4412e+06	103405	0.204597	0		
🧭 EO Variables	8	220.561	250.154	23	8153	20567	0.211047	0		
👩 EO Input	9	225.716	250.462	38	0100	20251.9	0.216981	0		

Sustainability metrics: potential environmental impact

This study quantifies the sustainability metrics of 'potential environmental impacts,' which is the emissions/unit mass of product and carbon tax, by using the Aspen Plus options of (1) 'Carbon Tracking' and (2) 'Global Warming Potential' (GWP).

Carbon tracking: In each utility block, 'carbon Tracking' allows the calculation of CO₂ emissions after specifying 'CO₂ emission factor data source' and 'ultimate fuel source' from built-in data. The CO₂ emission factor data source can be from European Commission decision of '2007/589/EC' or United States Environmental Protection Agency Rule of 'E9-5711' [21,22]. This source can also be directly specified by the user. In this example, CO₂ emission factor data source is US-EPA-Rule-E9-5711 and the fuel source is natural gas as seen in (Table 5). The utilities used in the column include cooling water and steam. For example, the steam utility is created as shown in (Table 6). The Results Summary | Operating Costs | Utility Cost Summary sheet displays the total heating and cooling duties as well as their costs (Table 7). The rate and cost of CO_2 emission results would be available within the 'Results Summary / CO₂ Emissions' as seen in (Table 8).

Global warming potential: Aspen Plus reports greenhouse gas emissions in terms of CO_2 equivalents of "Global Warming Potential" (GWP). CO_2 is one of the greenhouse gases that cause around 20% of GWP. To use this feature one can create a property

set (Table 9). Prop-Set properties report the carbon equivalents of streams based on data from three popular standards for reporting such emissions: 1) the IPCC's 2nd (SAR), 2) 4th (AR4) Assessment Reports, and 3) the U.S. EPA's (CO₂E-US) proposed rules from 2009 (Table 10) [21,22]. Prop-Set properties are reported in stream reports after selected: Report Options / Streams / Property sets (Table 11). The Setup | Calculation Options | Calculations sheet activates the Standards for 'Global Warming Potential' as well as 'Carbon fee/carbon tax' (Table 12). The 'Results' form of each 'Utility' block displays the CO₂ equivalents emitted by this utility in each unit operation block where it is used. Each block also reports these CO₂ equivalents in their own results forms together with the other utility results. These results also appear in the report file (Table 13).

Sustainability metrics: energy intensity

This study calculates the sustainability metrics 'Energy intensity' as nonrenewable energy/unit mass of products by using the Aspen plus Column Targeting Tool capabilities of 'Thermal Analysis' and 'Hydraulic Analysis.' Activation of 'Tray Rating' (Table 14) is necessary for the 'Hydraulic Analysis' capabilities

- Column / Tray Rating / New / Setup / Specs
- Column / Analysis / Analysis Options / Hydraulic analysis The CGCCs are helpful in identifying the targets for potential column modifications for

-	Specifications State Variables	Properties	Flash Options	Diagnostics	EO Options	🕝 Carbon Tracking	Information
-	Carbon tracking						
	Calculate CO2 emissions						
	CO2 emission factor data source:	US-EPA-Ru	le-E9-5711				
	Ultimate fuel source:	Natural_gas			-		
	CO2 emission factor:	2.34e-07	kg/cal	Ŧ			
	CO2 energy source efficiency factor:	1					
	- Fuel composition						

All Items	 Specifications 	State Variables	Properties	Flash Options	Diagnostics	EO Options	🛛 🎯 Carl
 Description Descript	Utility type: St	eam	•				
Flowsheet	Purchase price:		6	\$/ton	•		
Description of the second s	Energy price:			\$/Btu	Ŧ		
Log RADFRAC GUtilities CW Cog STEAM	Calculation option	n g/cooling value nt and temperatu	Specify re specification	inlet/outlet condi	tions		
💿 Input	Heating/Cooling	value:	850	Btu/lb	+		
EQ Variables	Inlet temperature			F	•		
EO Input	Outlet temperatu	re:		F	-		

Simulation <	Start Page × Main Flowsheet × Results Summary - Operating Costs × STEAM (UTILITY) - Input ×
All Items -	Operating Cost Summary Utility Cost Summary
 ▶ 🕞 Setup ▶ 🕞 Prop-Set 	Utility and stream cost overview
 Analysis □ Analysis □ Plowsheet □ Streams □ Blocks □ Utilities □ Reactions □ Convergence □ Flowsheeting Options □ Model Analysis Tools □ Blocks 	Utility Total heating duty: Btu/hr 8.70903e+06 Total cooling duty: Btu/hr 8.634e+06 Net duty (Total heating duty - Total cooling duty): Btu/hr 75024.9 Total heating cost flow: \$/hr 30.7377 Total cooling cost flow: \$/hr 8.64891 Net cost (Total heating cost + Total cooling cost): \$/hr 39.3866
 Convergence Convergence Operating Costs Convergence Conv	Stream cost Net cost flow of feeds: Net cost flow of products: Overall net cost flow:
able 7 Results Summary Operating Costs Operatir	g Cost Summary.

Standards for reporting CO_2 emissions	Prop-Set properties corresponding to each standard
IPCC SAR (1995)	CO2E-SAR
IPCC AR4 (2007)	CO2E-AR4
USEPA (2009)	CO2E-US

Table 10: Standards for reporting CO2 emissions.

- 1. Feed stage location (appropriate placement)
- Reflux ratio modification (reflux ratio vs. number of stages)
- 3. Feed conditioning (heating or cooling)
- Side condensing or reboiling (adding side heater and/or cooler) (Table 15) displays the condenser and reboiler duties as well as the CO₂ emission rate for the base case, while (Table16) shows the carbon fee (tax).

Modifying the feed stage location

In Aspen Plus, the condenser is the first stage, while the reboiler is the last stage. The Stage-H plots of CGCC can identify distortions because of inappropriate feed placements. The distortions become apparent as significant projections at the feed location called the pinch point due to a need for extra local reflux to compensate for inappropriate feed placement. A correctly introduced feed removes the distortions and reduces the condenser and reboiler duties.

- If a feed is introduced too high up in the column, a sharp enthalpy change occurs on the condenser side on the stage-H CGCC plot; the feed stage should be moved down the column.
- If a feed is introduced too low in the column, a sharp enthalpy change occurs on the reboiler side on the stage-H CGCC; the feed stage should be moved up the column [1,20].

For the base operation, Stage-Enthalpy plot displays a sharp change on the condenser side around feed stage 4 (Figure 4). This

All Items All Items	CO2 emissions summ Hierarchy: Net stream CO2e: Utility CO2e: Total CO2e: Net carbon fee / tax:	PLANT 0 1132.17 1132.17 2.83043	lb/hr lb/hr lb/hr S/hr				
Carl Reactions		Feed stream	name	Flow	/	CO2e	
 Log Convergence Flowsheeting Options 				lb/hr	-	lb/hr	-
Model Analysis Tools	FEED			60788.5		0	
ble 16 Base case: Result Summary / CO2 Emissions:	Net carbon fee = \$	52.83/hr.					

should be corrected by moving the feed stage down.

Condenser side projects excessive loss of accessible work: $Ex_{loss} = 300,000 \text{ Btu/hr}$ (Figure 5). This may be due to misplaced feed location and original partial condenser load and column configuration. The 'Hydraulic Analysis' is activated after creating the 'Tray Rating.' Hydraulic Analysis display three important flow plots: ideal minimum flow, actual flow, and hydraulic maximum flow, the plots indicate that between stages 1 to 4 actual and ideal flows are far apart from each other (Figure 6). Moving the feed stage from 4 to 7 removes the sharp changes around the feed stage 4 as seen in (Figure 7). The sustainability metrics after moving the feed stage from 4 to 7 show the reduction of

- CO_2 emission rate from 1132.2 lb/hr to 1077.4 lb/hr representing a 4.8% decrease as seen in (Tables 16 and Table 17).
- Condenser duty from -8.634e+6 Btu/hr to -8.183e+6 Btu/ hr.
- Reboiler duty from 8.714e+6 Btu/hr to 8.28e+6 Btu/hr.
- The net carbon fee decreased from \$2.8/hr to \$2.7/hr (Tables 16 and Table 18).
- Table 19 indicates that other alternative feed stages 6 would not produce favorable CO₂ emission rate; the rate

Figure 6 Base case: NF = 4; Analysis / Hydraulic Analysis.

Figure 7 Modified case I: NF = 7; Analysis / Stage-Enthalpy.

of 1084.6 lb/hr for NF = 6 is higher than that of 1077.4 lb/ hr for NF = 7. Hence it is disregarded.

Figures 5 and **Figure 8** indicate that the maximum rate of exergy loss is reduced from 300,000 Btu/hr to 160,000 Btu/hr after moving the feed stage from 4 to 7. This represents around 46% reduction in the accessible work loss after the modification.

Modifying the reflux ratio

Utility usage Condenser:	CW			Reboiler:	STEAM			
Condenser:	CW			Reboiler:	STEAM			
Dute					STEAN			
Duty:	-8.18357e+06	Btu/hr	•	Duty:	8.28742e+06	Btu/hr	•	
Usage:	327908	lb/hr		Usage:	9749.9	lb/hr		
				j-				
Cost:	8.1977	\$/hr	•	Cost:	29.2497	\$/hr		
CO2 emission rate:				CO2 emission rate:	1077.36	lb/hr	•	
	Usage: Cost: CO2 emission rate:	Usage: 327908 Cost: 8.1977 CO2 emission rate:	Usage: 327908 lb/hr Cost: 8.1977 \$/hr CO2 emission rate:	Usage: 327908 Ib/hr • Cost: 8.1977 \$/hr • CO2 emission rate: •	Usage: 327908 lb/hr • Usage: Cost: 8.1977 \$/hr • Cost: CO2 emission rate: • CO2 emission rate:	Usage: 327908 Ib/hr ▼ Usage: 9749.9 Cost: 8.1977 \$/hr ▼ Cost: 29.2497 CO2 emission rate: - CO2 emission rate: 1077.36	Usage: 327908 lb/hr ▼ Usage: 9749.9 lb/hr Cost: 8.1977 \$/hr ▼ Cost: 29.2497 \$/hr CO2 emission rate: ▼ CO2 emission rate: 1077.36 lb/hr	

Hierarchy:	PLANT		-			
Net stream CO2e:	0	lb/hr	•			
Utility CO2e:	1077.36	lb/hr	•			
Total CO2e:	1077.36	lb/hr	•			
Net carbon fee / tax:	2.69341	\$/hr	•			
	1077.36 2.69341 Feed stream	name	Flow	1	CO2e	
			lb/hr	-	lb/hr	-
FEED			60788.5		0	

	Summary Balanc	e Split Fracti	on Reboi	ler U	Jtilities Stage Utiliti	es Status		
	Utility usage ———							
	Condenser:	CW			Reboiler:	STEAM		
	Duty:	-8.24334e+06	Btu/hr	•	Duty:	8.34327e+06	Btu/hr	•
	Usage:	330303	lb/hr	•	Usage:	9815.61	lb/hr	•
	Cost:	8.25758	\$/hr	•	Cost:	29.4468	\$/hr	•
	CO2 emission rate:			Ŧ	CO2 emission rate:	1084.62	lb/hr	•
Table 19 Modifie	d case II: NF = 6; Results /	Utilities.						

The horizontal gap between the CGGC T-H pinch point and the ordinate represents the excess heat, and therefore, the scope for a reduction in reflux ratio [7,18]. As the reflux ratio is reduced the CGCC will move towards the ordinate and hence reduce both the reboiler and condenser duties. However, to preserve the separation, the number of stages must increase. Figure 7 and Table 20 with the modified feed stage and will represent the base case for possible reflux ratio (RR= 6.06) modifications: the gap between the pinch point and ordinate suggests that the duties in the reboiler and condenser can be further reduced by reducing reflux ratio. In the first modification, reflux ratio is reduced to RR = 4.5 from RR = 6.06. As the reflux ratio is reduced, number of stages is increased to N = 20 with the feed stage NF = 12 (instead of NF = 7). Figure 9 displays the CGCC Stage-H plot. Table 21 indicates that with the decreased reflux ratio from 6.06 to 4.5

 CO_2 emission rate decreased from 1077.4 lb/hr to 813.1

lb/hr (around 24% reduction in CO_2 emission).

- The reboiler duty decreased from 8.28 e+06 Btu/hr to 6.25 e+06 Btu/hr, which caused the reduction in CO_2 emission.
- The condenser duty decreased from 8.19 e+06 Btu/hr to 6.16 e+06 Btu/hr.

In the second modification, (Figure 10) shows the CGCC with RR = 2.5, N = 28 and NF = 14. As (Table 22) indicates that with the decreased reflux ratio from 6.06 to 2.5

- CO₂ emission rate decreased from 1077.4 lb/hr to 479.8 lb/hr (around 55% reduction)
- The reboiler duty decreased from 8.28e+06 Btu/hr to 3.69e+06 Btu/hr.
- The condenser duty decreased from 8.19 e+06 Btu/hr to

All Items 🔹	Оре	rating Cost Summary Utility Cost Summa	ry			
🕨 🗔 Setup	– Utili	ty summary				
🕨 🗔 Prop-Set	- Cent	i sannarj				
🗀 Analysis	•	Utility ID:		CW	STEAM	
Flowsheet						
🕨 🗔 Streams		Utility type:		WATER	STEAM	
A 🖾 Blocks		Costing rate:	\$/hr	8.1977	29.2497	
▷ 🗋 D1		Mara flavo	II. A	227000	0740.0	
🕨 🕞 Utilities		Mass flow:	ib/nr	327908	9749.9	
Carl Reactions		Duty:	Btu/hr	8.18357e+06	8.28742e+06	
De Convergence		Heating/Cooling value:	Ptu/lb	24.0560	950	
Flowsheeting Options		Heating/ cooling value:	BLU/ID	-24.9009	000	
Model Analysis Tools		CO2 emission factor data source:			US-EPA-RULE-E9-57	
EO Configuration		Illtimate fuel source:			NATURAL GAS	
4 🧟 Results Summary		on material source			NATONAL_0AD	Ξ
Run Status		CO2 emission factor:	lb/Btu		0.00013	
_g Streams		CO2 energy source efficiency factor:		1	1	
				-	-	
Lg Operating Costs		CO2 emission rate:	lb/hr		1077.36	
Table 20 Base Case I: N = 14, NF=7; RR= 6.06; Res	ults !	Summary / Operating Costs.				

D1 (RadFrac) - Results × D1 (Radfrac) - CGCC(S-H) - Plot × D1 (RadFrac) - Analysis × D1 (Radfrac) - C

	Summary	Balance	Split Fraction	on	Reboiler	Utilities	Stage Utiliti	es Status		
	Utility usage ا	2								
	Condenser:	CV	N			Reboiler:		STEAM		
	Duty:	-6	-6.16503e+0€		/hr 🔻	Duty:		6.25422e+06	Btu/hr	
	Usage:	24	47027	lb/h	nr 🔻	Usage:	1	7357.9	lb/hr	
	Cost:	6.1	L7568	\$/h	r 🔻	Cost:		22.0737	\$/hr	•
	CO2 emissio	on rate:			Ŧ	CO2 er	mission rate:	813.048	lb/hr	
21 Modifie	d case I: N = 20,	NF=12; RR= 4	4.5.							

Summary Balanc	e 🛛 Split Fracti	on Rebo	oiler	Utilities Stage Utiliti	es Status			
Utility usage								
Condenser:	CW			Reboiler:	STEAM			
Duty:	-3.75719e+06	Btu/hr	•	Duty:	3.69065e+06	Btu/hr	•	
Usage:	150547	lb/hr	•	Usage:	4341.94	lb/hr	•	
Cost:	3.76368	\$/hr	•	Cost:	13.0258	\$/hr	•	
CO2 emission rate:			∇	CO2 emission rate:	479.785	lb/hr	•	

3.75e+06 Btu/hr.

• Net carbon fee is reduced from \$2.7/hr to \$1.2/hr, as seen in (Table 23).

With the decreased reflux ratio from 6.06 to 2.5, (Figure 11) indicates that

- The exergy loss at the condenser is reduced from $Ex_{loss} = 160000 \text{ Btu/hr}$ to $Ex_{loss} = 55,000 \text{ Btu/hr}$.
- The exergy loss at the feed stage is reduced from $Ex_{loss} = 135000 \text{ Btu/hr}$ to $Ex_{loss} = 30,000 \text{ Btu/hr}$.

As seen in (Figure 12), except the stages close to condenser, the actual flow closely follows the thermodynamic ideal minimum flow with the decreased reflux ratio from 6.06 to 2.5. This represents close to optimum flow conditions in most of the stages.

Feed conditioning

Figure 7 and Figure 8, and (Table 17) display the base case with the feed temperature of 225°F. The need for an adjustment of feed quality can be identified from sharp enthalpy changes on

the stage-H or temperature-H CGCC plot

- If a feed is excessively sub-cooled, the T-H CGCC plots will show a sharp enthalpy changes on the reboiler side, and extent of this change determines the approximate feed heating duty required.
- If a feed is excessively over heated, the T-H CGCC plots will show a sharp enthalpy changes on the condenser side, and extent of this change determines the approximate feed cooling duty required.
- Changes in the heat duty of pre-heaters or pre-coolers will lead to similar duty changes in the column reboiler or condenser loads, respectively.

There is a sharp change in enthalpy above the feed stage yet it is not close to reboiler in the CGCC Stage-Enthalpy plot shown in (Figure 7). This still indicates sub cooling of the feed; therefore, feed temperature should be increased. In the modification, the feed temperature is increased from 225° F to 250° F. Figure 13 shows the S-H CGCC. Table 24 shows that after preheating

- The reboiler duty decreased from $Q_R = 8.3e+06$ Btu/hr to $Q_R = 4.3e+06$ B tu/hr and the cost decreased from \$29/ hr to \$15/hr.
- The condenser duty increased from $Q_c = 8.18e+06$ Btu/

hr to $Q_c = 8.80e+06$ B tu/hr and the cost decreased from 8.2/hr to 8.8/hr.

 The CO₂ emission decreased from 1077 lb/hr to 555.8 lb/ hr.

Figure 14 shows that the exergy loss increased from 160000 Btu/hr to 230000 Btu/hr around the condenser due to the increased cooling duty.

Utility usage							
Condenser:	CW			Reboiler:	STEAM		
Duty:	-3.75719e+06	Btu/hr	•	Duty:	3.69065e+06	Btu/hr	•
Usage:	150547	lb/hr	•	Usage:	4341.94	lb/hr	•
Cost:	3.76368	\$/hr	•	Cost:	13.0258	\$/hr	•
CO2 emission rate:			Ŧ	CO2 emission rate:	479.785	lb/hr	•

Summary Balanc	e Split Fracti	on Rebo	oiler	Jtilities Stage Utiliti	es Status		
Utility usage ———							
Condenser:	CW			Reboiler:	STEAM		
Duty:	-8.80091e+06	Btu/hr	•	Duty:	4.27602e+06	Btu/hr	•
Usage:	352644	lb/hr	•	Usage:	5030.61	lb/hr	•
Cost:	8.8161	\$/hr	•	Cost:	15.0918	\$/hr	•
CO2 emission rate:			∇	CO2 emission rate:	555.882	lb/hr	•

Side condensing or side reboiling

Feed conditioning is usually preferred to side condensing or side reboiling. Side condensing or side reboiling is external modification at a convenient temperature level. The scope for side condensing or side reboiling can be identified from the area beneath and/or above the CGCC pinch point (area between the ideal and actual enthalpy profiles). This area could be reduced by integrating side condensing and/or reboiling on an appropriate stage [1,19,10,18]. If a significant area exists above the pinch, a side reboiler can be placed at a convenient temperature level. This allows heat supply to the column using a low-cost hot utility, hence lowering the overall operating costs.

If a significant area exists below the pinch, a side condenser can be placed at a convenient temperature level. This allows heat removal from the column more effectively and by a cheaper cold utility, hence lowering the overall operating costs.

Table 17 and Figure 7 represent the base case. Figure 7

shows a significant area existing below and above the pinch between ideal and actual profiles; therefore a side condenser and a heater can be placed at convenient temperature levels (stages). In this modification, a side condenser is installed at stage 6 to remove –7.5e+06 Btu/hr and a side heater is installed at stage 11 supplying 5.0e+06 Btu/hr at a cheaper rate. Side condensers and heaters are installed using '**Heaters Coolers**' block (Table 25) (Figure 15) displays the CGCC temperature-enthalpy plot.

Tables 4, 26 shows that

- Total condenser duty increased to (-7.874e+06 -7.5e+06) Btu/hr from -8,2e+06 Btu/hr.
- Total reboiler duty increased to (-1.050e+07 +5.0e+06) Btu/hr from 8,28e+06 Btu/hr.
- CO₂ emission rate increased to 2015 lb/hr from 1077 lb/ hr.

Table 26 shows the increase in energy usage, CO_2 emission, and net carbon fee. Also, the cost of external installation of heat exchangers has to be considered. Overall these modifications do not lead to sustainable operation as they violate the both sustainable metrics of 'Energy intensity' and 'Potential environmental impact.'

CONCLUSIONS

This study demonstrates a conceptual design tool of the Aspen Plus simulator for sustainable operation of distillation columns, which are highly energy intensive and an important part of chemical and petrochemical process industries. The 'Column Targeting Tool (CTT)' can help reduce the use of energy and hence CO_2 emission. The 'Carbon Tracking (CT)' and 'Global Warming Potential' options can help quantify the reduction in CO_2 emission. They can be part of sustainability metrics of 'Energy intensity' and 'Potential environmental impact' for existing and new design of distillation column operations. An integrated approach of combination of column targeting tools, carbon tracking, pinch analysis with existing process heats, and

Simulation	< ۲	Start Page × Main	n Flowsheet $ imes angle$	RADFRAC (Rad	dFrac) - Results × RAI	DFRAC (Radfrac) - CGCC(S-	·H) - P		
All Items 👻		Summary Balan	ce 🛛 Split Fracti	on Reboiler	Utilities Stage Utilit	ties Status				
🥑 User Transp 🧭 Generalized	ort Subi 🔺 Transpi	Utility usage			· · ·					
 Ø Dynamic Ø Dynamic Equipmer Ø Block Options 		Condenser:	CW		Reboiler:	STEAM				
		Duty:	-7.87445e+0€	Btu/hr ·	Duty:	1.05036e+07	Btu/hr	•		
		Usage:	315522		v Usage:	12357.1	lb/hr	•		
Results		Cost:	7.88804	\$/hr	 Cost: 	37.0714	\$/hr	•		
Interface Profiles		CO2 emission rate	:		CO2 emission rate	1365.46	lb/hr	•		
 Results / Stage	Utilities	1								
All Items	l Items 🔹 🛛 Sum		ce Split Fractio	on Reboiler	Utilities Stage Utilit	ies Status				
User Transport Subi Generalized Transpi Dynamic Dynamic Equipmer Block Options		Stage heater/cooler utilities								
		Stage	Duty Btu/hr 🔻	Usage Ib/hr	Cost CC)2 emission rate				
Profiles		11	5e+06	5882.35	17.6471 650					
CO2 emissions summ	ary									
Hierarchy:	PLANT		•							
Net stream CO2e:	0	lb/hr	•							
Utility CO2e:	2015.46	lb/hr	•							
Total CO2e:	2015.46	lb/hr	•							
Net carbon fee / tax:	5.03866	\$/hr	•							
ble 26 Modified case: TF =	=225 oF; RR=6.0)5; N = 14; NF = 7; Result	ts / Utilities; Side c	ooler at stage 6:	Q _c = -7.5e+06 Btu/hr; Side	e heater at stage 1	$1: Q_{R} = 5e+0$	6 Btu/		

overall process simulation may lead to sustainable chemical and petrochemical process industries.

REFERENCES

- 1. US. DOE, Office of Energy Efficiency and Renewable Energy, "Distillation Column Modeling Tools," DOE. Washington, DC.
- 2. White DC Optimize energy use in distillation. CEP. 2012; 35-41.
- 3. Pinto FS, Zemp R, Jobson M, Smith R. Thermodynamic optimization of distillation columns. Chem Eng Sci. 2011; 66: 2920-34.
- 4. Martins AA, Mata TM, Costa CAV, Sikdar SK. Framework for sustainability metrics. Ind Eng Chem Res. 2007; 46: 2962-73.
- Schwarz J, Beloff BR, Beaver E. Use Sustainability metrics to guide decision-making. CEP 2002: July: 58-63.
- 6. Sikdar SK. Sustainable Development and Sustainability Metrics. AIChE J. 2003; 49: 1928-32.
- 7. Aspen Technology: accessed in 2013.
- Al-Muslim, H.Dincer, I. Thermodynamic analysis of crude oil distillation systems. Int J Energy Res. 2005; 29: 637-55.
- 9. Tanzil D, Beloff BR. Overview on Sustainability Indicators and Metrics. Environ Quality Management. 2006; 42-56.
- 10.Clift R. Sustainable development and its implications for chemical engineering. Chem Eng Sci. 2006; 61: 4179-87.
- 11. Ameta G, Rachuri S, Fiorentini X, Mani M, Fenves S, Lyons J et al. Extending the notion of quality from physical metrology to information and sustainability. J Intell Manuf. 2009.
- 12. Dhole VR. Linnhoff B. Distillation column targets. Comp Chem Eng. 1993; 17: 549-60.
- 13. De Koeijer GM, Rivero R. Entropy production and exergy loss in

experimental distillation columns. Chem Eng Sci. 2003; 58: 1587-97.

- 14. Rivero R. Garcia M. Urquiza J. Simulation exergy analysis and application of diabatic distillation to a tertiary amyl methyl ether production unit of a crude oil refinery. Energy, 2004; 29: 467-89.
- 15.Demirel Y. Thermodynamic Analysis of Separation Systems. Sep Sci Technol. 2004; 39: 3897-942.
- 16.Demirel Y. Retrofit of Distillation Columns by Thermodynamic Analysis. Sep Sci Technol. 2006; 41: 791-817.
- Center For Waste Reduction, Technologies Focus Area: Sustainability Metrics, 2004 (available at http://www.aiche.org/ cwrt/pdf/ BaselineMetrics.pdf, 2004).
- Chem E. Sustainable Development Progress Metrics Recommended for use in the Process Industries, 2004 (available at http:// www. icheme.org/sustainability/metrics.pdf).
- 19.Demirel Y. Exergy analysis of distillation columns. Int J Exergy. 2006; 3: 345-61.
- 20.Bandyopadhyay S. Malik RK. Shenoy UV. Temperature-enthalpy curve for energy targeting of distillation columns. Comput Chem Engng. 1998; 22: 1733-44.
- 21.Agrawal R. Herron DM. Efficient use of an intermediate reboiler or condenser in a binary distillation. AIChE J 1998; 44: 1303-14.
- 22.Bandyopadhyay, S. Effect of feed on optimal thermodynamic performance of a distillation column. Chem Eng J. 2002; 88: 175-86.
- 23.European Commission Decision 2007/589/EC: Official Journal of the European Commission, 31.8.2007, L229/1.
- 24. United States Environmental Protection Agency Rule E9-5711: Federal Register / Vol. 74, No. 68 / Friday, April 10, 2009 / Proposed Rules, pp 16639-16641 (Table C-1. C-2, C-3).

Cite this article

Demirel Y (2013) Sustainable Operations for Distillation Columns. Chem Eng Process Tech 1: 1005.