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Abstract

Distillation process consumes about 40% of the total energy used to operate the 
plants in petrochemical and chemical process industries in North America. Therefore, 
sustainable distillation column operation requires responsible use of energy and 
reduction of harmful emission such as CO2. The Aspen Plus ‘Column Targeting Tool’ 
(CTT) options in a simulation environment can help reduce the use of energy and 
hence CO2 emission. The Aspen plus ‘Carbon Tracking’ (CT) together with the ‘Global 
Warming Potential’ options can quantify the reduction in CO2 emission. The CTT is 
based on the practical near-minimum thermodynamic condition approximation and 
exploits the capabilities for thermal and hydraulic analyses of distillation columns 
to identify the targets for possible column modifications. By using the ‘CO2 emission 
factor data source’ and fuel type, the CT estimates the total CO2 emission and net 
carbon fee/tax in the use of utility such as steam. A comparative assessment with the 
sustainability metrics displays the usage of energy, emission of CO2, and cost before 
and after the distillation column modifications. This study comprises both an interactive 
and graphically-oriented case study with simulation tool and sustainability metrics for 
quantifying the reduction in the energy consumption and CO2 emission in distillation 
column operations.

INTRODUCTION 
The U.S. Department of Energy estimates that there are more 

than 40,000 distillation columns consuming about 40% of the 
total energy used to operate the plants in petrochemical and 
chemical process industries in North America [1,2]. A typical 
distillation column resembles a heat engine delivering separation 
work by using heat at a high temperature in the reboiler and 
discharging most of it to the environment at a lower temperature 
in the condenser [3]. Aspen Plus ‘Column Targeting Tool’ (CTT) 
is based on the Practical Near-Minimum Thermodynamic 
Condition (PNMTC) approximation representing a practical and 
close to reversible operation [4-9]. It exploits the capabilities 
for thermal and hydraulic analyses of distillation columns to 
identify the targets for possible column modifications in: 1) stage 
feed location, 2) reflux ratio, 3) feed conditioning, and 4) side 
condensing and/or reboiling. These modifications can reduce the 
utility usage and improve energy efficiency. 

The options of CTT can help reduce the use of energy, while 
the ‘Carbon Tracking’ (CT) and Global Warming Potential options 
can help quantify the reduction in CO2 emission in a simulation 
environment. If nonrenewable and limited, energy usage 
affects environment through the emission of pollutants such 
as CO2. Sustainability has environmental, economic, and social 
dimensions and requires the responsible use of resources such 
as energy and reduction in CO2 emission. The three intersecting 

dimensions illustrate sustainability metrics (3D) that include 
material use, (nonrenewable) energy use, and toxic and pollutant 
emissions [10-14]. In this study, the energy and CO2 emission as 
the pollutant are used as the sustainability metrics in distillation 
column operations. This study demonstrates how to reduce and 
quantify the energy consumption and CO2 emissions with the 
sustainability metrics in distillation column operations. 

MATERIALS AND METHODS

Sustainability

‘Sustainability is maintaining or improving the material and 
social conditions for human health and the environment over 
time without exceeding the ecological capabilities that support 
them [6]’. The dimensions of sustainability are economic, 
environmental, and societal (Figure 1). The Center for Waste 
Reduction Technologies (CWRT) of the American Institute of 
Chemical Engineers (AIChE) and the Institution of Chemical 
Engineers (IChemE) proposed a set of sustainability metrics that 
are quantifiable and applicable to a specific process [15,16]

• Material intensity (nonrenewable resources of raw 
materials, solvents/unit mass of products)

• Energy intensity (nonrenewable energy/unit mass of 
products)

• Potential environmental impact (pollutants and 
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emissions/unit mass of products)

• Potential chemical risk (toxic emissions/unit mass of 
products)

The first two metrics are associated with the process 
operation. The remaining two metrics represent chemical risk 
to human health in the process environment, and the potential 
environmental impact of the process on the surrounding 
environment. For distillation column operations, this study uses 
a comparative assessment with the sustainability metrics of: 

•	 ‘Energy intensity’ as nonrenewable energy/unit mass of 
products by using ‘Column Targeting Tool.’

•	 ‘Potential environmental impact’ as emissions and cost/ 
unit mass of products by using ‘Carbon Tracking’ and 
‘Global Warming Potential’ options of the Aspen Plus 
simulator.

Column targeting tool

The Column Targeting Tool (CTT) of Aspen Plus is a conceptual 
design tool for lowering cost of operation through modified 
operating conditions, and providing insight into understanding 
tray/packing capacity limitations. The CTT is based on the 

Practical Near-Minimum Thermodynamic Condition (PNMTC) 
representing a close to practical reversible column operation 
[10]. For RadFrac, MultiFrac, and PetroFrac column models, 
the CTT performs thermal, exergy, and hydraulic analyses 
capabilities that can help identify the targets for appropriate 
column modifications in order to [7,14,17].

•	 Reduce utilities cost

•	 Improve energy efficiency

•	 Reduce capital cost by improving thermodynamic driving 
forces

•	 Facilitate column debottlenecking 

The CTT can be activated by using the corresponding option 
on the Analysis / Analysis Options sheets, as shown in (Table 1). 
Results of the column targeting analysis depend strongly on the 
selection of light key and heavy key components in Targeting 
Options (Table 2) [7]. Before designating light key and heavy 
components for the column (see Table 3), the user runs the 
simulation and inspects the column split-fractions, composition 
profiles, and component K-values displayed by the ‘Plot Wizard.’ 
If there is more than one light key component, the heaviest of 
them is selected as the light key. In case of multiple heavy key 
components, the lightest is selected as the heavy key. In the 
default method, key components are selected based on the 
component K-values. The CTT has a built-in capability to select 
light and heavy key components for each stage of the column [7]. 

Thermal analysis

Thermal analysis capability is useful in identifying design 
targets for improvements in energy consumption and efficiency 
[7,11-14,18-20]. In this capability the reboiling and condensing 
loads are distributed over the temperature range of operation 
of the column. The thermal analysis of CTT produces ‘Column 

Economic

Environmental

Societal

3D

2D

2D

2D

Figure 1 Three dimensions of sustainability.

Table 1 Analysis / Analysis Options to activate the Column Targeting Tools (CTT).

Table 2 Analysis / Targeting Options with key component specification.
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Grand Composite Curves’ (CGCC) and ‘Exergy Lost Profiles.’ 
The user makes changes to column specifications until the 
profiles look right based on the column targeting methodology. 
The CGCCs are displayed as the stage-enthalpy (Stage-H) 
or temperature-enthalpy (T-H) profiles. They represent the 
theoretical minimum heating and cooling requirements in the 
temperature range of separation. This approximation takes into 
account the inefficiencies introduced through column design and 
operation, such as pressure drops, multiple side-products, and 
side strippers. The CGCCs are helpful in identifying the targets for 
potential column modifications for

1. Feed stage location (appropriate placement)

2. Reflux ratio modification (reflux ratio vs. number of 
stages)

3. Feed conditioning (heating or cooling)

4. Side condensing or reboiling (adding side heater and/or 
cooler)

The equations for equilibrium and operating lines are solved 
simultaneously at each stage for specified light key and heavy key 
components. Using the equilibrium compositions of light L and 
heavy H key components the enthalpies for the minimum vapor 
and liquid flows are obtained by

* min
Vmin *

 =  
 

V
VH H
V

; * min
Lmin *

 =  
 

L
LH H
L

                 (1)

where V* and L* are the molar flows of equilibrium, * * and V LH H  
are the enthalpies of equilibrium vapor and liquid streams leaving 
the same stage, respectively, and the minimum vapor and liquid 
flow rates leaving the same stage with the same temperatures 
can be estimated by [13,14,18-20]

*
min min*

1 ( )= +L L
L

V D L x
y

; *
min min*

1 ( )= −H H
H

L V y D
x

                (2)

From the enthalpy balances at each stage, the net enthalpy 
deficits are obtained by

def Lmin Vmin= − + DH H H H   (Before the feed stage)             (3)

def Lmin Vmin feed= − + −DH H H H H  (After the feed stage) (4)

After adding the individual stage enthalpy deficits to the 
condenser duty, the enthalpy values are cascaded, and plotted in 
the CGCC. This is called the top-down calculation procedure. At 
the feed stage, mass and energy balances differ from an internal 
stage and the enthalpy deficit at the feed stage becomes

*
def,F
* * * * *

[ ( ) /

( ) ( ) / ( )]

= + + −

− − − −

C D L D F

F F V D F F F

H Q D H H x y

y x H x x y x
                (5)

The values of * * and F Fy x  may be obtained from an adiabatic 
flash for a single phase feed, or from the constant relative 
volatility estimated with the converged compositions at the feed 
stage and feed quality. This procedure can be reformulated for 
multiple feeds and side products as well as different choices 
of the key components. In a CGCC, a pinch point near the feed 
stage occurs for nearly binary ideal mixtures. However, for 
nonideal multicomponent systems pinch may exist in rectifying 
and stripping sections. Exergy (Ex) is defined the maximum 
amount of work that may be performed theoretically by bringing 
a resource into equilibrium with its surrounding through a 
reversible process.

= ∆ − ∆oEx H T S                 (6)

Where H and S are the enthalpy and entropy, respectively, 
and To is the reference temperature, which is usually assumed as 
the environmental temperature of 298.15 K. A part of accessible 
work potential is always lost in any real process. Exergy losses 
(destructions) represent inefficient use of available energy due to 
irreversibility, and should be reduced by suitable modifications 
[11,12,17]. Exergy balance for a steady state system is 

loss
into out of
system system

1 1
      

+ − + − + − + =      
         

∑ ∑   

 

o o
s s

s s

T TnEx Q W nEx Q W Ex
T T

(7)

Where sW  is the shaft work? As the exergy loss increases, the 
net heat duty has to increase to enable the column to achieve a 
required separation. Consequently, smaller exergy loss means 
less waste energy. The exergy profiles are plotted as state-
exergy loss or temperature-exergy loss. In general, the exergy 
loss profiles can be used as a tool to examine the degradation of 
accessible work due to [7,11,12].

•	 Momentum loss (pressure driving force)

•	 Thermal loss (temperature driving force)

•	 Chemical potential loss (mass transfer driving force)

Hydraulic analysis

Tray or packing rating information for the entire column is 
necessary to activate the hydraulic analysis. In addition, allowable 
flooding factors (as fraction of total flooding) for flooding limit 
calculations can be specified. Hydraulic analysis helps identify 
the allowable limit for vapor flooding on the Tray Rating Design/
Pdrop or Pack Rating|Design/Pdrop sheets. The default values are 
85% for the vapor flooding limit and 50% for the liquid flooding 
limit. The liquid flooding limit specification is available only if the 
down comer geometry is specified. The allowable limit for liquid 
flooding (due to down comer backup) can be specified on the 
Tray Rating|Downcomers sheet [7,13,14]. The hydraulic analysis 
capability helps understand how the vapor and liquid flow rates 
in a column compare with the minimum (corresponding to the 
PNMTC) and maximum (corresponding to flooding) limits. For 
packed and tray columns, jet flooding controls the calculation 
of vapor flooding limits. For tray columns, parameters such as 
downcomer backup control the liquid flooding limits. Hydraulic 
analysis produces plots for flow rates versus stage and can be 

Method Use When

User defined Allows you to specify the light key and heavy key components.

Based on 
component split-
fractions

This method is best for sharp or near-sharp splits fractions in 
product streams.

Based on 
component
K-values

This method is best for sloppy splits.

Based on column 
composition 
profiles

In principle, this method is similar to the K-value based method. 
It is best suited for sloppy splits and it is, in general, inferior to 
the K-value based method.

Table 3:  Selection of key components within the ‘Targeting Options’ [7].
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used to identify and eliminate column bottlenecks [7]. Graphical 
and tabular profiles (Table 4) help identifying targets and 
analysis for possible modifications by the user. The ‘Plot Wizard’ 
(Figure 2) produces various plots including the types:

•	 Thermal analysis: The CGCC (T-H) Temperature versus 
Enthalpy

•	 Thermal analysis: The CGCC (S-H) Stage versus Enthalpy

•	 Hydraulics analysis: Thermodynamic Ideal Minimum 
Flow, Hydraulic Maximum Flow, Actual Flow

•	 Exergy loss profiles: Stage versus Exergy Loss or 
Temperature versus Exergy Loss

RESULTS AND DISCUSSIONS
Sustainable column operation is illustrated in the following 

example using a RADFRAC column (Figure 3), which will be the 

base case. The input summary showing the feed flow rate, feed 
composition, column configuration, and utility bloc definitions 
are given below.

COMPONENTS:  C2H6 C2H6 / C3H8 C3H8 /  C4H10-1 C4H10-
1 / C5H12-1 C5H12-1 /  C6H14-1 C6H14-1 / WATER H2O PROP-
ERTIES RK-SOAVE STREAM FEED: TEMP=225oF PRES=250 psia;  
MOLE-FLOW C2H6 30 / C3H8 200 / C4H10-1 370 / C5H12-
1 350 / C6H14-1 50 lbmol/hr BLOCK RADFRAC RADFRAC: 
NSTAGE=14;CONDENSER=PARTIAL-V; FEED 4 PRODUCTS BOT 
14 L / DIS 1 V; P-SPEC 1 248 psia COL-SPECS D:F=.226 MOLE 
DP-COL=4 MOLE-RR=6.06  TRAY-SIZE 1 2 13 SIEVE , TRAY-
RATE 1 2 13 SIEVE DIAM=5.5 ft UTILITIES COND-UTIL=CW REB-
UTIL=STEAM UTILITY Water;  COST = 0.05 $/ton ; PRES=20. 
PRES-OUT=20. psia; TIN=50. TOUT=75. F UTILITY STEAM;  COST  
=6. $/ton ; STEAM HEATING-VALU=850.0 Btu/lb CALCCO2=YES 
FACTORSOURCE=”US-EPA-Rule-E9-5711” FUELSOURCE= “Natu-
ral gas” CO2FACTOR=1.30000000E-4

Table 4 Profiles / Thermal Analysis.

Figure 2 Plot Wizard displays several plots as a part of ‘Analysis’ and ‘Column Targeting Tool.’

RADFRACFEED

BOT

DIS

Figure 3 RadFrac column.
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Sustainability metrics: potential environmental impact

This study quantifies the sustainability metrics of ‘potential 
environmental impacts,’ which is the emissions/unit mass of 
product and carbon tax, by using the Aspen Plus options of (1) 
‘Carbon Tracking’ and (2) ‘Global Warming Potential’ (GWP).

Carbon tracking: In each utility block, ‘carbon Tracking’ 
allows the calculation of CO2 emissions after specifying ‘CO2 
emission factor data source’ and ‘ultimate fuel source’ from 
built-in data. The CO2 emission factor data source can be from 
European Commission decision of ‘2007/589/EC’ or United States 
Environmental Protection Agency Rule of ‘E9-5711’ [21,22]. This 
source can also be directly specified by the user. In this example, 
CO2 emission factor data source is US-EPA-Rule-E9-5711 and the 
fuel source is natural gas as seen in (Table 5). The utilities used 
in the column include cooling water and steam. For example, 
the steam utility is created as shown in (Table 6). The Results 
Summary | Operating Costs | Utility Cost Summary sheet displays 
the total heating and cooling duties as well as their costs (Table 
7). The rate and cost of CO2 emission results would be available 
within the ‘Results Summary / CO2 Emissions’ as seen in (Table 
8).

Global warming potential: Aspen Plus reports greenhouse 
gas emissions in terms of CO2 equivalents of “Global Warming 
Potential’ (GWP). CO2 is one of the greenhouse gases that cause 
around 20% of GWP. To use this feature one can create a property 

set (Table 9). Prop-Set properties report the carbon equivalents 
of streams based on data from three popular standards for 
reporting such emissions: 1) the IPCC’s 2nd (SAR), 2) 4th (AR4) 
Assessment Reports, and 3) the U.S. EPA’s (CO2E-US) proposed 
rules from 2009 (Table 10) [21,22]. Prop-Set properties are 
reported in stream reports after selected: Report Options / 
Streams / Property sets (Table 11). The Setup | Calculation 
Options | Calculations sheet activates the Standards for ‘Global 
Warming Potential’ as well as ‘Carbon fee/carbon tax’ (Table 
12). The ‘Results’ form of each ‘Utility’ block displays the CO2 
equivalents emitted by this utility in each unit operation block 
where it is used. Each block also reports these CO2 equivalents 
in their own results forms together with the other utility results. 
These results also appear in the report file (Table 13).

Sustainability metrics: energy intensity

This study calculates the sustainability metrics ‘Energy 
intensity’ as nonrenewable energy/unit mass of products by using 
the Aspen plus Column Targeting Tool capabilities of ‘Thermal 
Analysis’ and ‘Hydraulic Analysis.’ Activation of ‘Tray Rating’ 
(Table 14) is necessary for the ‘Hydraulic Analysis’ capabilities

•	 Column / Tray Rating / New / Setup / Specs

•	 Column / Analysis / Analysis Options / Hydraulic analysis 
The CGCCs are helpful in identifying the targets for 
potential column modifications for

Table 5 Utilities /Steam / Input / Carbon Tracking / Calculate CO2 emissions.

Table 6 Utilities / New / STEAM / Input / Specifications.
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Table 7 Results Summary | Operating Costs | Operating Cost Summary.

Table 8 Results Summary / CO2 Emissions / Summary.

Table 9 Property Set / Properties.
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Table 11 Setup | Report Options | Stream / Property Sets.

Table 12 Setup / Calculation Options / Standard for Global Warming Potential / Carbon fee (tax).

Table 13 Report / Utilities.

Standards for reporting CO2 emissions Prop-Set properties corresponding to each standard

IPCC SAR (1995) CO2E-SAR

IPCC AR4 (2007) CO2E-AR4

USEPA (2009) CO2E-US
Table 10:  Standards for reporting CO2 emissions.
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1. Feed stage location (appropriate placement)

2. Reflux ratio modification (reflux ratio vs. number of 
stages)

3. Feed conditioning (heating or cooling)

4. Side condensing or reboiling (adding side heater and/or 
cooler) (Table 15) displays the condenser and reboiler 
duties as well as the CO2 emission rate for the base case, 
while (Table16) shows the carbon fee (tax).

Modifying the feed stage location

In Aspen Plus, the condenser is the first stage, while the 
reboiler is the last stage. The Stage-H plots of CGCC can identify 
distortions because of inappropriate feed placements. The 
distortions become apparent as significant projections at the 

feed location called the pinch point due to a need for extra 
local reflux to compensate for inappropriate feed placement. A 
correctly introduced feed removes the distortions and reduces 
the condenser and reboiler duties.

•	 If a feed is introduced too high up in the column, a sharp 
enthalpy change occurs on the condenser side on the 
stage-H CGCC plot; the feed stage should be moved down 
the column. 

•	 If a feed is introduced too low in the column, a sharp 
enthalpy change occurs on the reboiler side on the 
stage-H CGCC; the feed stage should be moved up the 
column [1,20].

For the base operation, Stage-Enthalpy plot displays a sharp 
change on the condenser side around feed stage 4 (Figure 4). This 

Table 14 Column / Tray Rating / New / Setup / Specs.

Table 15 Base case: NF = 4; RadFrac / Results : CO2 emission rate = 1132.2 lb/hr.

Table 16 Base case: Result Summary / CO2 Emissions: Net carbon fee = $2.83/hr.

Table16
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should be corrected by moving the feed stage down.

Condenser side projects excessive loss of accessible work: 
Exloss = 300,000 Btu/hr (Figure 5). This may be due to misplaced 
feed location and original partial condenser load and column 
configuration. The ‘Hydraulic Analysis’ is activated after creating 
the ‘Tray Rating.’ Hydraulic Analysis display three important flow 
plots: ideal minimum flow, actual flow, and hydraulic maximum 
flow, the plots indicate that between stages 1 to 4 actual and ideal 
flows are far apart from each other (Figure 6). Moving the feed 
stage from 4 to 7 removes the sharp changes around the feed 
stage 4 as seen in (Figure 7). The sustainability metrics after 
moving the feed stage from 4 to 7 show the reduction of

•	 CO2 emission rate from 1132.2 lb/hr to 1077.4 lb/hr 
representing a 4.8% decrease as seen in (Tables 16 and 
Table 17). 

•	 Condenser duty from -8.634e+6 Btu/hr to -8.183e+6 Btu/
hr.

•	 Reboiler duty from 8.714e+6 Btu/hr to 8.28e+6 Btu/hr.

•	 The net carbon fee decreased from $2.8/hr to $2.7/hr 
(Tables 16 and Table 18).

•	 Table 19 indicates that other alternative feed stages 6 
would not produce favorable CO2 emission rate; the rate 

of 1084.6 lb/hr for NF = 6 is higher than that of 1077.4 lb/
hr for NF = 7. Hence it is disregarded.

Figures 5 and Figure 8 indicate that the maximum rate of 
exergy loss is reduced from 300,000 Btu/hr to 160,000 Btu/hr 
after moving the feed stage from 4 to 7.This represents around 
46% reduction in the accessible work loss after the modification.

Modifying the reflux ratio

Figure 4 Base case: NF=4; Stage-Enthalpy plot of Column Grand Composite 
Curve. 

Figure 5 Base case: NF = 4: Analysis / Exergy loss profile. 

Figure 6 Base case: NF = 4; Analysis / Hydraulic Analysis.

Figure 7 Modified case I: NF = 7; Analysis / Stage-Enthalpy.

Figure 8 Modified case I: NF = 7; Analysis / Stage-Exergy Loss Profile. Exloss = 
160,000 Btu/hr.
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Table 17 Modified case I: NF = 7; RADFRAC / Results / Utilities.

Table 18 Modified case I: NF = 7; Result summary / CO2 Emissions / Summary.

Table 19 Modified case II: NF = 6; Results / Utilities.

The horizontal gap between the CGGC T-H pinch point and 
the ordinate represents the excess heat, and therefore, the scope 
for a reduction in reflux ratio [7,18]. As the reflux ratio is reduced 
the CGCC will move towards the ordinate and hence reduce both 
the reboiler and condenser duties. However, to preserve the 
separation, the number of stages must increase. Figure 7 and 
Table 20 with the modified feed stage and will represent the base 
case for possible reflux ratio (RR= 6.06) modifications: the gap 
between the pinch point and ordinate suggests that the duties in 
the reboiler and condenser can be further reduced by reducing 
reflux ratio. In the first modification, reflux ratio is reduced to RR 
= 4.5 from RR = 6.06. As the reflux ratio is reduced, number of 
stages is increased to N = 20 with the feed stage NF = 12 (instead 
of NF = 7). Figure 9 displays the CGCC Stage-H plot. Table 21 
indicates that with the decreased reflux ratio from 6.06 to 4.5

•	 CO2 emission rate decreased from 1077.4 lb/hr to 813.1 

lb/hr (around 24% reduction in CO2 emission).

•	 The reboiler duty decreased from 8.28 e+06 Btu/hr to 
6.25 e+06 Btu/hr, which caused the reduction in CO2 
emission.

•	 The condenser duty decreased from 8.19 e+06 Btu/hr to 
6.16 e+06 Btu/hr.

In the second modification, (Figure 10) shows the CGCC with 
RR = 2.5, N = 28 and NF = 14. As (Table 22) indicates that with the 
decreased reflux ratio from 6.06 to 2.5

•	 CO2 emission rate decreased from 1077.4 lb/hr to 479.8 
lb/hr (around 55% reduction)

•	 The reboiler duty decreased from 8.28e+06 Btu/hr to 
3.69e+06 Btu/hr.

•	 The condenser duty decreased from 8.19 e+06 Btu/hr to 

Table 21 
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Table 20 Base Case I: N = 14, NF=7; RR= 6.06; Results Summary / Operating Costs.

Table 21 Modified case I: N = 20, NF=12; RR= 4.5.

Table 22 Modified case II: N = 28, NF=14; RR= 2.5; Results / Utilities.

3.75e+06 Btu/hr.

•	 Net carbon fee is reduced from $2.7/hr to $1.2/hr, as seen 
in (Table 23).

With the decreased reflux ratio from 6.06 to 2.5, (Figure 11) 
indicates that

•	 The exergy loss at the condenser is reduced from Exloss = 
160000 Btu/hr to Exloss = 55,000 Btu/hr. 

•	 The exergy loss at the feed stage is reduced from Exloss = 
135000 Btu/hr to Exloss = 30,000 Btu/hr. 

As seen in (Figure 12), except the stages close to condenser, 
the actual flow closely follows the thermodynamic ideal 
minimum flow with the decreased reflux ratio from 6.06 to 2.5. 
This represents close to optimum flow conditions in most of the 
stages.

Feed conditioning

Figure 7 and Figure 8, and (Table 17) display the base case 
with the feed temperature of 225oF. The need for an adjustment 
of feed quality can be identified from sharp enthalpy changes on 
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the stage-H or temperature-H CGCC plot

•	 If a feed is excessively sub-cooled, the T-H CGCC plots will 
show a sharp enthalpy changes on the reboiler side, and 
extent of this change determines the approximate feed 
heating duty required.

•	 If a feed is excessively over heated, the T-H CGCC plots 
will show a sharp enthalpy changes on the condenser side, 
and extent of this change determines the approximate 
feed cooling duty required.

•	 Changes in the heat duty of pre-heaters or pre-coolers 
will lead to similar duty changes in the column reboiler or 
condenser loads, respectively. 

There is a sharp change in enthalpy above the feed stage yet it 
is not close to reboiler in the CGCC Stage-Enthalpy plot shown in 
(Figure 7). This still indicates sub cooling of the feed; therefore, 
feed temperature should be increased. In the modification, the 
feed temperature is increased from 225oF to 250oF. Figure 13 
shows the S-H CGCC. Table 24 shows that after preheating

•	 The reboiler duty decreased from QR = 8.3e+06 Btu/hr to 
QR = 4.3e+06 B tu/hr and the cost decreased from $29/
hr to $15/hr.

•	 The condenser duty increased from QC = 8.18e+06 Btu/

hr to QC = 8.80e+06 B tu/hr and the cost decreased from 
$8.2/hr to $8.8/hr.

•	 The CO2 emission decreased from 1077 lb/hr to 555.8 lb/
hr. 

Figure 14 shows that the exergy loss increased from 160000 
Btu/hr to 230000 Btu/hr around the condenser due to the 
increased cooling duty.

Figure 9 Modified case I: N = 20, NF=12; RR= 4.5; Analysis / CGCC Stage 
Enthalpy.

Figure 10 Modified case II: N = 28, NF=14; RR= 2.5; Analysis / CGCC Stage-
Enthalpy.

Figure 11 Modified case II: N = 28, NF=14; RR= 2.5; Analysis / Stage-Exergy 
loss. 

Figure 12 Modified case II: N = 28, NF=14; RR= 2.5; Analysis / Hydraulic 
Analysis. 

Figure 13 Modified case I: TF =250 oF; RR=6.05; N = 14; NF = 7; Analysis / 
Thermal Analysis CGCC Stage-Enthalpy.

Figure 14
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Table 22 Modified case II: N = 28, NF=14; RR= 2.5; Results / Utilities.Table 23 Results Summary / CO2 Emissions / Net carbon fee.

Table 24 Results/ Utilities.

Table 25 Side heater installation: Heaters Coolers / Side Duties.

Side condensing or side reboiling

Feed conditioning is usually preferred to side condensing 
or side reboiling. Side condensing or side reboiling is external 
modification at a convenient temperature level. The scope for 
side condensing or side reboiling can be identified from the area 
beneath and/or above the CGCC pinch point (area between the 
ideal and actual enthalpy profiles). This area could be reduced by 
integrating side condensing and/or reboiling on an appropriate 
stage [1,19,10,18]. If a significant area exists above the pinch, a 
side reboiler can be placed at a convenient temperature level. 
This allows heat supply to the column using a low-cost hot utility, 
hence lowering the overall operating costs.

If a significant area exists below the pinch, a side condenser 
can be placed at a convenient temperature level. This allows heat 
removal from the column more effectively and by a cheaper cold 
utility, hence lowering the overall operating costs.

Table 17 and Figure 7 represent the base case. Figure 7 
Figure 14 Modified case I: TF =250 oF; RR=6.05; N = 14; NF = 7; Analysis / 
Thermal Analysis CGCC Stage-Exergy loss.
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shows a significant area existing below and above the pinch 
between ideal and actual profiles; therefore a side condenser and 
a heater can be placed at convenient temperature levels (stages). 
In this modification, a side condenser is installed at stage 6 to 
remove −7.5e+06 Btu/hr and a side heater is installed at stage 11 
supplying 5.0e+06 Btu/hr at a cheaper rate. Side condensers and 
heaters are installed using ‘Heaters Coolers’ block (Table 25) 
(Figure 15) displays the CGCC temperature-enthalpy plot.

Tables 4, 26 shows that

•	 Total condenser duty increased to (−7.874e+06 -7.5e+06) 
Btu/hr from −8,2e+06 Btu/hr.

•	 Total reboiler duty increased to (−1.050e+07 +5.0e+06) 
Btu/hr from 8,28e+06 Btu/hr.

•	 CO2 emission rate increased to 2015 lb/hr from 1077 lb/
hr.

Table 26 shows the increase in energy usage, CO2 emission, 
and net carbon fee. Also, the cost of external installation of heat 
exchangers has to be considered. Overall these modifications 
do not lead to sustainable operation as they violate the 
both sustainable metrics of ‘Energy intensity’ and ‘Potential 
environmental impact.’

CONCLUSIONS
This study demonstrates a conceptual design tool of the 

Aspen Plus simulator for sustainable operation of distillation 
columns, which are highly energy intensive and an important 
part of chemical and petrochemical process industries. The 
‘Column Targeting Tool (CTT)’ can help reduce the use of energy 
and hence CO2 emission. The ‘Carbon Tracking (CT)’ and ‘Global 
Warming Potential’ options can help quantify the reduction 
in CO2 emission. They can be part of sustainability metrics of 
‘Energy intensity’ and ‘Potential environmental impact’ for 
existing and new design of distillation column operations. An 
integrated approach of combination of column targeting tools, 
carbon tracking, pinch analysis with existing process heats, and 

Figure 15 Modified case: TF =225 oF; RR=6.05; N = 14; NF = 7; Analysis / 
Thermal Analysis / CGCC Temperature-Enthalpy; Side cooler at stage 6: QC = 
−7.5e+06; Side heater at stage 11: QR = 5e+06.

Results / Stage Utilities

Table 26 Modified case: TF =225 oF; RR=6.05; N = 14; NF = 7; Results / Utilities; Side cooler at stage 6: QC = −7.5e+06 Btu/hr; Side heater at stage 11: QR = 5e+06 Btu/hr.
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overall process simulation may lead to sustainable chemical and 
petrochemical process industries. 
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