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ABSTRACT  

We describe the evolution of laser damage spots on bulk nickel generated by multipulse femtosecond laser irradiation 
with a 100 μm x 100 μm square flat-top beam profile as a function of the laser fluence and the number of pulses incident 
on the target.  This large-area irradiation simulates conditions associated with the interaction of femtosecond laser pulses 
on a remote target.  The larger area laser damage sites are characterized either by a series of self-organized surface 
structures with micro- and nanoscale features or a deep circular pit rather than a crater that mirrors the beam profile.  
Furthermore, the ablation rate of the deepest feature sharply increases above a laser fluence of 2 J/cm2; this increase is 
associated with the creation of a deep circular ablation pit generated during ablation with the first few pulses on the 
sample that continuously grows upon multipulse irradiation due to the focusing of incident laser energy into the pit by 
the sloped pit surfaces. 
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1. INTRODUCTION  
The interaction of femtosecond lasers with materials is characterized by the deposition of laser energy into an electron 
plasma on a timescale shorter than the electron-phonon coupling time [1-4].  This ultrashort deposition time is termed 
athermal processing and allows the deposition of large amounts of energy into a well-defined region of the material 
without thermal affects during the lifetime of the pulse.  For this reason, a common objective regarding the laser-matter 
interaction with femtosecond lasers has been focused on the ability to affect material properties or ablate material with 
high resolution and with minimal heat affected zone.  Such research tends to minimize both the spot size on target as 
well as the number of laser shots incident on the target in order to achieve a high resolution [5-11].  However, a different 
regime of femtosecond laser interaction physics is gaining interest: the effects of multipulse femtosecond irradiation with 
a relatively large beam profile (tens to hundreds of microns).  There are two driving forces behind research in this area: 
1) the use of ultrashort lasers to interact with remote targets (e.g. through filaments) naturally requires large spot sizes 
and multiple laser shots to generate damage, 2) laser surface processing technology that utilize lasers to generate 
controlled surface morphologies benefit from large-area, multiple laser pulse interactions.  

The primary interest in large-area multipulse femtosecond laser interactions to date has been in the field of surface 
processing.  Specifically, it has been demonstrated that femtosecond laser damage with laser fluence values well above 
(>10X) the material ablation threshold is characterized by a series of self-organized surface structures with feature sizes 
on both the micro- and the nanoscale that develop over a large number of pulses [12-17].  These extreme laser conditions 
have been utilized to tailor various material surface properties including the fabrication of “black silicon” [18-22],  near-
blackbody metals [23,24], and superhydrophobic/superhydrophilic surfaces [25-29]. However, the physical mechanisms 
controlling the laser damage profile under large area multipulse conditions are still under investigation. Studies utilizing 
stop-motion SEM imaging have demonstrated that the laser fluence has a direct impact on both the physical interaction 
mechanisms and the resulting damage profiles; for example, the value of the laser fluence dictates whether surface 
structures rise above the original surface plane (Above Surface Growth Mounds) via fluid flow or sink below the 
original surface plane (Below Surface Growth Mounds) via preferential ablation mechanisms [13,30,31].   
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2.2 Surface Analysis 

After processing, each irradiated spot was imaged using a Philips XL-30 Environmental Scanning Electron Microscope 
(SEM) manufactured by the FEI Company. The size and shape of surface features on the laser damage profile were 
characterized using morphological image analysis techniques to isolate the individual structures as well as the ablation 
pits and to provide relevant statistics on the size, shape, and eccentricity of both the structures and the pits.  The analysis 
was performed using MATLABTM software and was implemented by: 1) performing a combination of morphological 
image processing of the grayscale image and thresholding to produce a binary image containing the outline of the 
structures of interest; and 2) statistical analysis of the structure outlines.  These steps were performed twice: once to 
isolate and analyze the structures themselves and once to isolate and analyze the surrounding pits.  An example surface 
morphology of a laser damage profile resulting from 300 laser pulses with a laser fluence of 1.58 J/cm2 is shown in 
Figure 2.  The original SEM image is shown in Figure 2(a) and an the corresponding surface analysis in which surface 
structures are outlined in green and the pits are outlined in red is shown in Figure 2(b).  Note that the analysis of the 
ablation pits is limited to the deeper features and not the valleys between each structure.   

    
(a)                                                                       (b) 

Figure 2: Output of image analysis algorithm to isolate and analyze surface structures on a nickel sample illuminated 
with 300 femtosecond laser pulses with a fluence of 1.58 J/cm2.  

 

3. RESULTS AND DISCUSSION 
Analysis of multishot laser damage profiles associated with a square flat-top beam profile with dimensions 100 μm x 100 
μm and fluence values significantly higher than the ablation threshold reveals that the laser damage cannot be fully 
described by the laser depth (or equivalently the ablation rate); rather, the laser damage profile is characterized by the 
generation of self-organized surface structures with properties that vary as a function of the laser fluence. 

A representative sample of SEM images of the laser damage profiles as a function of the laser fluence and the number of 
pulses per shot is shown in Figure 3.  Each square within the image represents an individual laser damage profile with a 
100 μm x 100 μm square flat-top beam profile.  
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Figure 4: Maximum depth of the primary ablation pit as a function of the laser fluence and the number of laser pulses.  
Each pixel corresponds to the analysis of a single laser damage profile.  The color of the pixel represents the ablation 

depth in units of microns.   

 
The ablation rate of the primary pit for each laser damage site was calculated by dividing the pit depth of the primary pit 
by the number of laser shots.  A plot of this maximum ablation rate as a function of fluence is shown in Figure 5.  A 
clear discontinuity in the ablation rate exists at a laser fluence of 2 J/cm2.  Specifically, the maximum ablation rate first 
increases slowly with fluence, ranging from 1.6 μm/shot at 1.1 J/cm2 to 1.96 μm/shot at 1.98 J/cm2 (approximate slope of 
0.42 in this range).  For laser fluence values larger than 2 J/cm2, the ablation rate increases significantly, reaching a value 
of 7.13 μm per shot at 2.78 J/cm2 (approximate slope of 5.4 in this range).   

 
Figure 5: Ablation rate as a function of laser fluence for Nickel.   

 

The discontinuity of the ablation rate at a laser fluence of 2 J/cm2 coincides with a shift in the laser-matter interaction 
and the physical growth mechanisms of the self-organized features.  Specifically, 2 J/cm2 marks a transition in the 
response of the material to incident laser energy from the development of surface structures below the original surface 
plane via preferential ablation, and surface structures that rise above the original surface through fluid flow and 
redeposition of ablated material. The development of different classes of surface features via laser ablation of nickel as 
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well as the corresponding structural characteristics has been extensively studied in previous publications [13,30,31].  The 
transition between different classes of surface morphologies is clearly seen when inspecting not only the depth of the 
primary pit, but also the average pit depth.  These parameters are plotted in Figure 6 as a function of the number of laser 
pulses for three representative values of laser fluence: 1.1 J/cm2, 1.98 J/cm2, and 2.78 J/cm2, which correspond to the two 
extremes of the laser fluence range plotted in Figure 5 as well as the transition region.    

   
Figure 6: (a) Average pit depth, and (b) Maximum Pit Depth as a function of the number of pulses incident on the target 

for three values of the laser fluence.   

 

The laser damage profiles fabricated at a laser fluence of 1.1 J/cm2 are characterized by homogenous surface structures 
where the average and the maximum pit depth are roughly equal, which is consistent with the class of surface structures 
described as Below Surface Growth (BSG) Mounds that develop through surface-geometry-driven variations in the 
ablation rates on the sample   After a certain number of laser shots, the induced surface roughness contains micron-scale 
features that begin to scatter light and alter the distribution of laser energy on the sample in manner that further increases 
the structure size and thus self-organizes over a large number of laser pulses [13,15,36].   

At a laser fluence of 1.98 J/cm2, the structure homogeneity decreases and a maximum (primary) pit develops that is 
deeper than the average pit depth.  As the laser fluence is increased, the induced temperature rise in the surface 
absorption region increases, which in turn amplifies the surface-geometry-driven variations in the ablation rates.  
Thermal loading effects due to the 100 μm spot size tends to generate a hot spot in the center of the beam profile and 
thus a primary ablation pit in the center of the profile.  At 1.98 J/cm2, this central pit is visible but not dominant.  Further 
increasing the laser fluence (e.g. to 2.78 J/cm2) leads to accelerated ablation; once a central pit develops, the conical 
shape of the pit captures increasing amounts of the incident laser energy via multiple reflections, which causes the pit 
size and depth to grow with increasing pulse count. After sufficient growth, this pit dominates the entire laser damage 
profile.  Depending on the desired application, this runaway condition leading to deep multipulse ablation can be utilized 
to generate a controlled series of deep pits on the surface or utilized to inflict significant laser damage on a remote target.   

4. CONCLUSION 
Laser damage profiles on a bulk nickel substrate generated by multipulse femtosecond laser ablation with a 100 μm x 
100 μm beam diameter were characterized as a function of laser fluence and the number of pulses incident on the target.  
This characterization is critical to the understanding of laser damage mechanisms on remote targets using femtosecond 
laser systems.  The laser fluence has a direct and significant impact on the nature of the laser damage site.  Specifically, 
the laser damage profile is characterized by a series of self-organized surface structures that develop over hundreds of 
laser pulses.  Thus, the laser damage sites cannot be sufficiently characterized by a simple ablation rate or ablation depth; 
rather the geometry of the resulting surface must be taken into account.  Furthermore, increasing the laser fluence in a 
range from 1.1 J/cm2 to 3.18 J/cm2 results in a transition from laser damage sites that mirror the beam profile to sites 
characterized by a large ablation pit induced by surface-geometry-induced accelerated ablation.  This transition is most 
concretely described by a discontinuity and rapid increase of the ablation rate above laser fluence of 2 J/cm2.  This 
multipulse, geometry-driven, deep ablation regime is a new paradigm of femtosecond laser damage that has potential 
applications to long-range interaction of femtosecond lasers with targets, including laser filament interactions.  
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