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This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregres-
sive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage
weighted least squares regression. The prediction method includes a combination of two separate

time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting
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periods. The two-stage weighted least-squares regression approach in this study is robust to outliers
and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale
central cooling system in an academic institution. The numerical case studies show the proposed predic-
tion method performs better than some ANN and ARX forecasting models for the given test data set.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate cooling load prediction is essential for the optimal
scheduling and planning of cooling system operation. As energy
prices increase, optimal control of cooling systems has become
more critical for energy cost reduction. Some studies reported that
the accuracy in cooling load forecasting and optimal control of
air-conditioning systems resulted in significant saving in buildings
energy cost [1]. Thermal energy storage (TES) or hybrid cooling
systems can be utilized to offset the cooling load during peak peri-
ods and lower energy costs [2]. However, without accurate cooling
load prediction, it is almost impossible to take full advantage of
such systems and their optimization; the efficient utilization of
operation schemes in cooling systems necessitates reliable predic-
tion of the cooling load [3].

Cooling load can be predicted based on external and internal
factors of cooling systems. In particular, cooling load depends on
many external factors of a cooling system, such as outdoor weather
parameters, indoor equipment usage, and indoor human activities
[4,5]. These external factors are often considered as the main
driving forces of cooling load [6-8]. Cooling load also depends on
internal factors such as historical load values or current load status.
For instance, cooling systems are usually unable to respond
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immediately to the changes in the external factors driving the re-
quired load. This is especially common for large-scale central cool-
ing systems. Thus, considering the external and internal factors, a
system can be represented as a feedback system, as shown in Fig. 1.

Although numerous studies have proposed excellent methods
for cooling load forecasting, the effect of outliers on cooling load
prediction has not been addressed sufficiently in the literature.
Moreover, some of the existing tools on cooling load forecasting
appear to require substantial computation or are hard to be conve-
niently customized for a large building complex. Therefore, it is
desirable to develop a more robust and adaptive method to miti-
gate the outlier effect and reduce computation.

This paper presents an hourly cooling-load prediction method
based on time-indexed autoregressive with exogenous inputs
(ARX) models with a two-stage weighted least squares regression.
The prediction method uses a combination of two separate time-
indexed ARX models for cooling load prediction: (1) 1 to 6 hours
(1-6 h) ahead and (2) 7-24 h ahead. The first model results in im-
proved cooling load forecasting for very short-term forecasting.
The second model is more accurate for prediction periods greater
than 7 h. The two-stage weighted least squares regression ap-
proach in this study allows fast and adaptive coefficient estimation
and provides the capability of reducing the influence of outliers.
Such a capability of outlier detection could also provide a potential
extension for risk management. The proposed approach is applica-
ble to meet a variety of accurate short-term cooling load and elec-
trical demand forecasting needs.
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2. Literature review

A variety of prediction methods have been studied in cooling
load forecasting. Such methods include simulation, grey-box,
regression, support vector machines and artificial neural networks.
Simulation-based methods usually rely on commercial energy sim-
ulation programs, e.g. EnergyPlus, TRNSYS, DOE-2, and ESP-r, to
simulate the thermal response of buildings [9-12]. Although these
programs are straightforward to use, they often require a large
number of inputs and substantial computational effort. Further-
more, measuring for some of the required inputs is not an easy task
or even possible. Thus, it could be difficult and costly to implement
such simulation programs.

Grey-box modeling builds the cooling load prediction model
partially based on expert knowledge by creating thermal networks
[13,14]. However, this may be computationally expensive and very
difficult to customize for a large-scale building complex for several
reasons: (1) the structure of a thermal network has a significant ef-
fect on the prediction accuracy, (2) modern building complexes are
designed and built with a high degree of complexity, and (3) differ-
ent areas of a building complex may use different materials and
have different indoor temperature set points and outdoor
conditions.

Artificial neural networks (ANN) and support vector machines
(SVM) are also common models for cooling load prediction
[15-24]. These two models have been well studied and discussed
in recent decades. They are known to be good at modeling nonlin-
ear problems. In addition, some studies have improved the accu-
racy of these models. For example, Yao et al. [24] integrated
residual error correction with radial based function (RBF) neural
networks to increase the accuracy of the model. However, they
usually suffer from high computational complexity and local opti-
mums. There is also a risk of overtraining an ANN.

Regression and time-series models are also widely used for
cooling load forecasting. Common models reported in the litera-
ture include multiple linear regression (MLR), autoregressive inte-
grated moving average (ARIMA), and autoregressive moving
average with exogenous inputs (ARMAX) models. An MLR model
predicts the cooling load by establishing the correlation between
cooling load and external inputs, which are mainly weather condi-
tions. An ARIMA model predicts the cooling load by using only its
previous records. The ARMAX model integrates the MLR and ARI-
MA models. Compared with the models mentioned in the previous
paragraph, regression models usually require a much shorter train-
ing time, but are less capable of modeling nonlinearity.

It has been reported that some MLR and ARIMA models were
not significantly more accurate than other models. For example,
Moghram and Rahman [25] compared five models for short-term
load forecasting (MLR, ARIMA, general exponential smoothing,
state space method, and knowledge-based approach), and showed
that traditional MLR and ARIMA models were no better than the
other models. Kawashima et al. [26] showed that MLR and ARIMA
models were less accurate than ANN models. Li et al. [19] com-
pared ARIMA with ANN and developed an ARIMA-ANN model.
Their result also showed that ARIMA was not as good as ANN.
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Fig. 1. Schematic diagram of a cooling system.

Yao et al. [22] applied Analytic Hierarchy Process (AHP) method
to combine different point estimations of cooling load and deter-
mined their optimal weights. The proposed approach could result
in significant improvement in cooling load forecasting by pair-wise
judgments between models with periodically updated weights.

Several ARMAX models have been studied and showed better
prediction. Yang et al. [27] studied an ARMAX model for short-term
load forecasting, and compared the results obtained from an evolu-
tionary programming (EP) approach with those from a gradient
search based approach implemented in a commercial software
package, SAS. The EP approach results were better, because this
EP approach was capable of providing a global optimal estimation
of the coefficients. Xu et al. [28] proposed time-varying ARMAX
models for ice-storage air-conditioning systems. The model con-
tained several sub-models with different temperature intervals to
cope with nonlinearity. The results indicated that a model with dif-
ferent temperature intervals could provide a more accurate predic-
tion than a model with a single interval. Yiu and Wang [29]
proposed a recursive extended least squares (RELS) approach for
parameter estimation in ARMAX models. They verified several or-
ders of ARMAX models to yield the minimum error in forecasting
of air-conditioning system performance.

Autoregressive with exogenous inputs (ARX) models, a special
case of ARMAX, have also been used for load forecasting. Yoshida
and Inooka [30] applied an ARX model to the rational operation
of a TES tank. Yun et al. [31] developed a building hourly thermal
load prediction scheme based on hourly indexed ARX models. In
their study, several ARX models were proposed with different time
and temperature intervals and compared with MLR, auto-regres-
sive (AR), and ANN models. The test results showed that these
improved ARX models were better than MLR, AR, and ANN models
with the same number of inputs.

Least squares methods are commonly used to estimate the coef-
ficients in regression models. However, the sensitivity to outliers is
a major drawback of conventional least squares methods. The pres-
ence of contaminated data may significantly decrease the accuracy
of such models. Some studies have utilized robust regression algo-
rithms, such as iteratively reweighted least squares (IRWLS), to re-
duce the effect of outliers on the accuracy of regression models.
Mbamalu and El-Hawary [32,33] applied IRWLS to predict autore-
gressive parameters in seasonal and short-term load forecasting of
power systems. They used the partial autocorrelation of past pre-
dicted load data to determine the sub-optimal models for hourly
load prediction. Their result shows that 97% of predictions have
absolute errors less than 10% of the actual values. Moreover, it
was concluded that by properly adjusting the tuning constant,
the results with Andrew and Fair’s weight functions were better
than those with other weight functions.

The accuracy of IRWLS can be improved if the appropriate
weight function is used based on the probability distribution of
the observations. The performance of different solution algorithms
and weight functions was investigated in IRWLS [34]. The analysis
of the numerical examples in that study showed quadratic
programming algorithms are efficient for Huber or Talwar weight
functions. However, for other types of weight functions some mod-
ification of Newton’s algorithm was preferred. A Monte Carlo ap-
proach was applied to evaluate the efficiency of eight weight
functions in IRWLS with Gaussian distributions [35]. The study
showed that a common formula for residual scaling might not
work well for all weight functions. Wolke and Schwetlick [36] pro-
posed some algorithms on scaling residuals for given coefficient
estimates in an IRWLS procedure. Moreover, the study proposed
some algorithms for converting a robust regression model to a
nonlinear least squares problem. Bissantz et al. [37] showed that
convergence of IRWLS methods is significantly faster than
modified Newton algorithms in minimization of convex functions.
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Kalyani and Giridhar [38] analyzed the convergence rate of IRWLS
and M estimator methods.

Many studies in cooling load forecasting have shown improved
prediction accuracy. However, none of the above studies has con-
sidered the effect of outliers in cooling load forecasting. In addition,
the majority of such studies propose models requiring complex
calculations and several inputs. ARX models have proven to be
computationally efficient and accurate in cooling load forecasting.
Such models could be improved by using robust regression meth-
ods that decrease the effect of outliers. Thus, this study presents a
two-stage robust regression method to improve the accuracy of
ARX models.

3. Model

This section explains the hourly cooling-load prediction method
based on time-indexed ARX models. This section also presents the
two-stage weighted least squares regression algorithm developed
to estimate the coefficients of the proposed ARX models. The two
stages consist of robust regression to decrease the effect of outliers
and use of an exponential forgetting factor to reflect the relative
importance of the most recent data.

3.1. Structure of the prediction method

The structure of the proposed prediction method is shown in
Fig. 2. The historical data (weather and cooling load) are prepro-
cessed and classified for hourly-indexed ARX models based on
the hours of the day and day types. From the historical data, the
ARX model coefficients with different values of forgetting factors
are estimated through the proposed two-stage reweighted least
squares (left side of Fig. 2). Then, the ARX model predicts future
cooling loads by using the coefficients with the optimal forget-
ting-factor value and the necessary weather and cooling load data.

3.2. ARX models

In this study, two different ARX models are used over different
forecasting periods to achieve better accuracy. ARX(1,2,24) and
ARX(24,168) are used to predict cooling loads 1-6 h ahead and
7-24 h ahead, respectively. The numbers in the parentheses of
the two acronyms refer to the time lag of the inputs. For instance,
ARX(1,2,24) means the inputs at time t -1, t — 2, and t — 24 are
used in the model. These two different models are used because
studies [39,40] showed that, although the prediction accuracy of
stochastic AR models decreases as the forecast time increases,
the accuracy of a 24 h forecasting model is better than that of a
forecast time greater than 6 h. This can be explained by the fact
that, as forecast time increases, the effect of recent hours’ informa-
tion diminishes but the daily repeating pattern becomes more
dominant.

Each of the two ARX models contains 48 hourly indexed
sub-models for each hour in the two types of day (weekdays and
weekends). Such a structure can properly reflect the different char-
acteristics of weekdays and weekends as well as those of different
hours. It can also reflect similar day-to-day cyclic patterns in the
base load, occupancy level, building open hours, and human activ-
ity level.

Because separate models are built in this study for weekdays
and weekends, a special rule for t—24 is defined. The time
t — 24 always refers to the same hour of the most recent day of
the same day type. For example, if the target hour t is 6 AM on
Tuesday, t — 24 is 6 AM on Monday in the same week. If it is
6 AM on Monday, then t — 24 refers to 6 AM on Friday of the pre-
vious week. If the target hour t is 6 AM on Sunday, t — 24 is 6 AM
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Fig. 2. Flow chart of the prediction scheme.

on Saturday. For 6 AM on Saturday, t — 24 refers to 6 AM on Sunday
of the previous week.

Without loss of generality and as is often done in practice, this
research uses two exogenous input variables: dry bulb ambient
temperature and relative humidity. Additional exogenous inputs,
such as wind speed, solar radiation and building occupancy, may
be added depending on the availability of data and the influence
levels.

The ARX(1,2,24) model is formulated as follows.

CLy=bio + br,th + bt‘ZT? + besRH; + b aT(RH; + b 5CL; 4
+beeTe1 +be7Try +besRHe 1 + beoTe 1RH 4
+ bi10CLli—3 + b1 Trn + bszf,z + b 13RH;
+ bt 1aTe—2RH;—2 + br15CLe_24 + br16Tr—24 + br.17Tf,z4
+ br1sRH; 24 + be 19T 24RH; 24 (1)

where CL is the cooling load at each time point t, and b,; is the
regression coefficient. T and RH are the ambient temperature and
relative humidity. Higher order and interaction terms are also in-
cluded to model nonlinearity.

The ARX(24,168) model is formulated in a similar way.

CL; = bto + be1Thax + beaTwgin + besTe + bf.4Tf + besRH;
+ begTeRH; + br7CLe 24 + begTr—24 + bz,9T?,24
+ br1oRH; 24 + b 11Tt 24RH: 24 + bt,lZCLt—IGS
+ br13Tr-168 + bz,mT?,mg + bt 15RH; 168
+ be16Tr 168RH; 168 2)

where Ty and Ty, are the daily maximum and minimum dry bulb
temperatures, respectively, for the target hour. Binary variables are
used to differentiate holidays and other special event days when the
cooling load is expected to be significantly higher or lower than nor-
mal days. The data of those days will also be labeled and recorded in
the database, so that they will not be used to predict the cooling
load for the following normal days after those holidays.
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The explanatory variables in the proposed ARX models were
chosen based on the past analysis of the cooling load and previous
studies in the literature. The accuracy of the models depends on
the selection of proper explanatory variables, and simply increas-
ing the number of the variables may result in over-fitting by
including insignificant variations in the model. Section 4 discusses
the suitability of the chosen variables in detail, and examines the
effect of excluding some variables on the calculation complexity
and accuracy of the models.

3.3. Two-stage weighted least squares

This section explains the two-stage weighted least-squares
regression algorithm. In the first stage, the initial weight matrix
is generated and outliers are labeled using IRWLS with the bis-
quare weighting function. The first stage is necessary for the fol-
lowing reasons: (1) outliers usually exist in data due to many
reasons such as incorrect readings, temporary shut-down for main-
tenance, or other special events, and (2) in regression models, the
existence of outliers could result in poor coefficient estimation that
can significantly reduce regression accuracy. Therefore, detecting
outliers and reducing the outlier effect are important for obtaining
the accurate coefficients.

In the second stage, the initial weight matrix will be reweighted
by using an exponential forgetting factor with different values. The
sum of squared errors for the past 90 days is calculated using those
regression coefficients with different values of the exponential for-
getting factor. The optimal coefficients with the least sum of
squared errors of the past 90 days are then used for prediction. This
second stage ensures the adaptiveness of the coefficient estima-
tion. The adaptiveness is important, because the cooling load pat-
tern tends to change over time. For example, the cooling load
pattern can change significantly owing to construction of new
buildings and implementation of new cooling systems with energy
saving features.

Generally, a regression model with p inputs and n instances
(n>p) can be written in a matrix form as follows.

Y-Xb+e (3)

where Y is an n-by-1 vector of output (or dependent) variables and
=[y1,¥2, - .. yal". X is an n-by-(p + 1) matrix of input (or indepen-
dent) variables. X can also be written as [1, Xy, Xa, . . ., Xp] or [X1, X2,
., Xn|T, where X;, X, .. ., X, are n-by-1 vectors of each input vari-
able and x4, Xa, .. ., X, are 1-by-(p + 1) vectors of each instance. b is a
(p + 1)-by-1 vector of regression coefficients. e is an n-by-1 vector of
errors with a standard deviation of o.
The conventional least squares method minimizes the sum of
squared errors.

minz = Ze = Z —x;b)’ (4)

i=1

To meet the above requirement, the coefficients are estimated
through the following equation.

b= (X"X) ' X"Y (5)

If a weight is added to each squared error, the conventional
least squares regression becomes a weighted least squares regres-
sion, and Eqs. (4) and (5) change to the following equations.

minz = ZW“e = ZW,, x;b (6)

b = (X"'WX) ' X"WY (7)
where W = diag(W;1, Way, ..., Wyy).

If we denote X =wX and Y =wY with
= (VWi1,vVWa,. .., \/W,m)T, we will have a new least squares
form with weighted input X' and weighted output Y'.
Y =XDb' +¢ (8)
minz = Ze’z Z v, —xb')’ 9)
i=1
b = X™X) X"y (10)

In the first stage of the two-stage weighted least squares proce-
dure, the initial weight matrix is calculated through IRWLS. The
IRWLS approach for robust regression focuses on minimizing the
sum of squared errors of estimates by using a weight function that
reduces the effect of outlying data points.

The evaluation and discussion of different weight functions is
beyond the scope of this paper. In this paper, a bisquare function,
often used in practice, is used as the weight function. The bisquare
weight function proposed by Tukey (1974) as appeared in [41] is as
follows.

Wii(ri) = {(1 - ui2)2 lui| < 1 -

0 otherwise

where u; = cs”’\/%
chosen based on 95% efficiency of the robust regression to least
squares method, and S=MAD/0.6745 where MAD is the median
of the absolute deviation of the residuals. The solution procedure
starts with initial estimates for b and o¢. In each iteration the
weighted least squares procedure is applied and estimates of b, &
and r; are updated. The procedure is continued until convergence.
The convergence criterion based on [33] is:

h; is the leverage, c = 4.685 is a tuning constant

(VWb)' (vWor) a2
VWb, || VWb,
where || - || is the Euclidean norm.

In the second stage, a new weight matrix W' = diag[W}] =

diag[2"™] is used in the weighted least squares again for the new
problem described by Egs. (8)-(10). Therefore, the new least
squares problem is defined as follows.

=X'b" +¢" (13)
minz’ = Ze”z Z —x'b")’ (14)
i=1
B// _ (x//TXH)*1 x//TY// (1 5)
where X' =w' X' and Y'=w'Y'.

Thus, the final regression coefficients are estimated through the
two-stage weighted least squares.

4. Results and discussion

This section presents the test results of the proposed prediction
method. The test is performed on a large-scale cooling system for
the campus of an academic institution with 7,580,265 square feet
of indoor area. The cooling is provided by chilled-water based cool-
ing systems. The test is performed during the cooling period of
2012 (April 1 to October 31). The historical data from the same
cooling periods in 2010 and 2011 are used as the initial learning
data set. The total capacity of the chilled water production by six
electric chillers and one steam turbine was 23,000 tons. The
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weather characteristics were obtained from the National Oceanic
and Atmospheric Administration (NOAA).

The proposed prediction scheme was implemented by a com-
puter code written in Matlab®, and run on a workstation with Intel®
Xeon® 3.40 GHz CPU and 32 GB memory. The calculation time for
the two ARX models were around 59 and 37 s, respectively.

An example of the coefficients of the two models for t =14 in
weekdays is given in Table 1. Because the ARX models contain
large number of coefficients (48 sets for each model), the rest of
the coefficients are not presented in this paper.

The predicted values of the proposed ARX models is compared
with the actual values of cooling load for five consecutive week-
days of summer 2012. As can be seen in Fig. 3, the forecast is close
to the actual values observed. The deviations are analyzed in detail
in the remainder of this section.

The performance of the two ARX models proposed in this paper
is further compared with those of the selected ANN and ARX
models in the literature. First, the ARX model’s performance is
compared with those of hourly-indexed ANN models through
back-propagation with the same number of inputs. The ANN mod-
els have one hidden layer, which contains 40 and 30 neurons in
that hidden layer for one-hour-ahead and 24-h-ahead models,
respectively. The network uses a hyperbolic tangent sigmoid acti-
vation function and is trained in 3000 epochs using the data of
2010 and 2011. Second, the performance of the proposed one-
hour-ahead forecasting ARX model is compared with that of a re-
cent 4-3-5 ARX model [31]. The temperature intervals and building
occupancy for the 4-3-5 ARX model are customized to include suf-
ficient data points in each temperature interval. The 24-h-ahead
model ARX(24,168) is compared with the 4-8-24 ARX model
[42]. The benchmark ARX models are hourly indexed, similarly to
the models in this study. Moreover, the 4-8-24 ARX model [42] fol-
lows a logic similar to that of this study for distinguishing week-
days and weekends for t — 24.

The performance of each model is investigated in terms of four
statistical indices introduced in [26] which measure the accuracy
of predicted values by comparing them with the actual values:
(1) standard error of estimate (SEE), (2) expected error percentage
(EEP), (3) coefficient of variation (CV), and (4) mean bias error
(MBS). These are calculated as:

where CL, is the predicted cooling load, CL; is the actual recorded
cooling load, and n is the total number of data points in the testing
data set.

The comparison reveals that the forecast by the proposed model
is closer to the actual vales than those by the other benchmark
models; the model proposed in this study has improved accuracy
in cooling load prediction by almost 10%. Table 2 shows the com-
parison of predictions with one hour of forecast time in terms of
the four evaluation indices described above. The results indicate
better accuracy from the proposed ARX(1,2,24) model in this study
compared to the benchmark ANN and 4-3-5 ARX models. Figs. 4
and 5 present the SEEs of the prediction with one-hour ahead of
forecast time for each hour in weekdays and weekends. Overall,
the ARX(1,2,24) model is better than the ANN and 4-3-5 ARX mod-
els for most of the hours in a day. The ARX(1,2,24) model is not bet-
ter than the ANN model only for 10 AM, but it is better than 4-3-5
ARX.

As shown in Table 2, there is improved prediction from the pro-
posed scheme for the data set. The two-stage weighted least
squares regression ensures that the regression coefficients are esti-
mated without any influence from outliers. Thus, a significant
improvement in accuracy is achieved. In contrast, it is shown that
the existence of outliers decreases the accuracy of the 4-3-5 ARX
model. Although it was claimed in [31] that the 4-3-5 ARX model
was more accurate than the ANN model, the advantage of the
4-3-5 ARX model diminishes due to its lack of robustness as com-
pared to the ANN model.

Figs. 4 and 5 also indicate different patterns for weekdays and
weekends: (1) the SEEs of 9 AM to 6 PM in weekdays are signifi-
cantly higher than those of the same period during weekends,
and (2) the SEE of each hour in weekends is more stable than that
in weekdays. A possible explanation for these different patterns is
the different levels of variation of human activities on the campus.
More human activities and higher occupancy on campus will
increase the heat gain inside buildings and cooled air loss through
building entrances. The increase in internal heat gain and cooling
loss results in increased demand for cooling load. However, in con-
trast with the cooling load prediction for a standalone building, the
occupancy and the level of human activities on the whole campus
are difficult to measure and have different patterns from day to
day. This means that the ARX model introduced in this paper is

SEE — i(ﬁf _ CLt)Z/n (16) able to model average human activities gn.d.occupancy even.with—
= out the data of occupancy and human activities. If the dynamic part
of human activities is significant, such information becomes
EEP — SEE « 100% (17) 1mportant for a more accurate prediction. Therefore, such informa-
Max;_15. n{CL:} tion should be added to the model.
Table 3 shows the comparison of test results of 24-h-ahead pre-
SEE diction. Overall, the proposed ARX(24,168) model has a better per-
CV =————x100% (18) formance than the compared ANN and 4-8-24 ARX models.
ZCLt/n However, the ARX(24,168) model is not as good as the ANN model
=1 in terms of the mean bias error. Similar to the one-hour-ahead pre-
R diction case, different patterns for weekdays and weekends can be
MBE = EZC[‘I — Cl « 100% (19) seen clearly from Figs. 6 and 7.
n& CL;
Table 1
The coefficient values of ARX models for t = 14 in weekdays.
ARX(1,2,24) ARX(24,168)
b14p —-95.26 b1ag -8.38 b1a16 ~7.14 b140 22234 b1ag 10.06 b1a16 -022
141 —-34.83 b1ao 0.10 1417 0.03 141 57.53 b1ao —-0.44
biaz 0.30 biao -0.03 biais —-4.19 biaz 12.35 bia0 21.91
bias -3.25 bian -21.49 bia1o 0.06 bias —99.88 bian —0.60
b1aa 0.06 b1a12 —0.06 b1ga 0.96 bia12 0.08
bias 1.02 bia13 7.43 bias —80.54 bia13 21.43
bias 76.49 biaia -0.11 bias 1.58 biaia -0.15
b1a7 -0.39 b1a1s 0.00 b147 0.55 bia1s 13.76
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Fig. 3. Comparison of actual and predicted values in June 4th-8th 2012 (weekday).

Table 2 Table 3
Overall test result of one-hour-ahead prediction using different models throughout Overall test result of 24-hours-ahead prediction using different models throughout
the entire testing period. the entire testing period.
Model ANN 4-3-5 ARX ARX(1,2,24) Model ANN 4-8-24 ARX ARX(24,168)
SEE (tons) 409.79 395.62 360.25 SEE (tons) 746.06 940.67 697.45
EEP (%) 3.36 3.24 2.96 EEP (%) 6.11 7.71 5.71
CV (%) 8.40 8.11 7.39 CV (%) 15.29 19.28 14.29
MBE (%) —3.05 -0.39 —0.53 MBE (%) 3.24 4.50 3.34
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Fig. 4. SEEs of one-hour-ahead prediction for each hour on weekdays. Fig. 6. SEEs of 24-hours-ahead prediction for each hour on weekdays.
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Figs. 8-10 show the SEEs with different forecast times by the
proposed prediction scheme. As described in the model section,
the prediction with 1-6 h of forecast time is estimated using the
ARX(1,2,24) model, while the prediction with 7-24 h of forecast
time is estimated using the ARX(24,168) model. As shown in the
figures, the overall SEE increases, as the forecast time increases

from 1 to 6. Although the overall SEE of the ARX(1,2,24) model
with 6h of forecast time is still lower than that of the
ARX(24,168) model in Fig. 8, the ARX(1,2,24) model is not much
better than the ARX(24,168) model at hours 19-23 in weekdays
as shown in Fig. 9. Therefore, there is not much benefit from using
the ARX(1,2,24) model to predict the cooling load with 7 h or more
of forecast times. However, as shown in Fig. 10, the ARX(1,2,24) is
better than ARX(24,168) model in all hours of weekends.

The analysis shows that the number of variables in the ARX
models is appropriate in terms of model adequacy and parsimony.
Including additional terms in a model, such as more variable inter-
action terms or higher order terms, did not decrease the SEE for the
testing data sets. The model efficiency was also verified. For in-
stance, removing T and RH interaction terms did not change the
calculation time while SEE increased to 365 and 771 tons for
ARX(1,2,24) and ARX(24,168), respectively. A possible reason for
that is T and RH have a large correlation for the cooling load in this
study. Also, removing Ty and Ty, increased MSE. For example,
the SEE increased to 774 in ARX(24,168).

5. Conclusions

This paper introduced an hourly cooling-load prediction meth-
od using hourly-indexed ARX models with a two-stage weighted
least-squares regression. The proposed method was tested using
the cooling load data in an academic institution, and the prediction
accuracy was compared with some ARX and ANN models. The re-
sults demonstrated that the forecasting method in this study im-
proved the prediction accuracy through the proper combination
of the two ARX models for different forecast times as well as the
differentiation of day types and outliers in historical load data.

The proposed prediction method includes the following charac-
teristics. First, the two-stage weighted least-squares regression
incorporates robustness and adaptiveness. The robust regression
by IRWLS is effective in mitigating the outlier influence on coeffi-
cient estimation. The exponential forgetting factor ensures that
the recent cooling load and weather patterns contribute more than
past ones in estimating coefficients. These lead to improved accu-
racy. Second, the ARX models in this study include higher order
terms of temperature and interaction terms among exogenous
variables to reflect the nonlinearity and inter-correlation between
input parameters, whereas many of the existing cooling-load fore-
casting studies use piecewise linearization to manage nonlinearity.
Although some higher order terms are included in the ARX models
of this study, the models are parsimonious. The total number of
forecasting variables is less than that of some recent studies in
cooling load forecasting. The reason is that the majority of existing
studies include additional coefficient sets based on temperature
intervals and demand periods, e.g. day, night and transition hours
between day and night, to handle the nonlinearity. The reduction
in coefficient sets results in decreased computational complexity
in comparison with ARX models in the recent literature.
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