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Abstract-Bearing faults constitute a significant portion of all 
faults in rotating machines, including wind turbine generators 
(WTGs). Current-based bearing fault detection has significant 
advantages over traditional vibration-based methods in terms of 
cost, implementation, and system reliability. This paper 
proposes a new wavelet filter-based method for incipient bearing 
fault detection using electric machine stator currents. The 
proposed method can dramatically increase the signal-to-noise 
ratio (SNR) of the bearing fault related signals in the stator 
current samples. The normalized energy of the wavelet-filtered 
stator current signals is mainly related to bearing faults and is 
applied as the index for bearing fault detection. Experiments are 
carried out for an induction machine with developed bearing 
faults; the results show that the proposed method is effective to 
detect the bearing faults at an early stage. 

 

I. INTRODUCTION 

Bearing faults constitute a significant portion of all faults in 
rotating machines, e.g., wind turbine generators (WTGs). For 
example, 40% of the faults of induction machines, which are 
commonly used for wind energy conversion, are bearing 
faults [1]-[2]. These bearing faults usually do not occur 
instantaneously but are developed gradually over time. It is 
highly desired to detect the bearing faults at an early stage 
and repair or replace the faulted bearing(s) to prevent 
catastrophic damages of the WTG systems. 

Conventional bearing fault detection techniques require 
additional expensive mechanical sensors and data acquisition 
equipment to implement [3]. The most commonly used 
sensors are vibration sensors, such as accelerometers. These 
sensors are mounted on the surface of WTG components, 
which are situated on high towers and are difficult to access 
during WTG operation. Moreover, the sensors and equipment 
are inevitably subject to failure, which could cause additional 
problems with system reliability and additional operating and 
maintenance costs. According to statistical data reported in 
[4], sensor failures constitute more than 14% of failures in 
WTG systems, while more than 40% of failures are linked to 
the failure of sensors, Therefore, it is desirable to develop a 
nonintrusive, low-cost, more effective, and more reliable 
technology for online bearing fault detection. Current-based 
(mechanical-sensorless) fault detection techniques, in fact, 
meet these requirements, because they usually do not require 
additional sensors above those already used for monitoring, 

controls, and protection of the WTG systems. Moreover, 
current signals are reliable and easily accessible from the 
ground. Therefore, current-based fault detection techniques 
have great economic benefits and potential to be adopted by 
industry. 

According to different stages of the fault development 
process, bearing faults can be categorized as follows: 1) 
single-point defects, which typically occur at the very late 
stage of the bearing life or due to severe system failures, and 
2) generalized roughness, which occurs when the bearing 
starts to degrade while it is still operable [5]. Much research 
effort has gone into the detection of single-point defects, 
where the characteristic fault frequencies are clear indicators 
for a present damage [6]. In fact, generalized roughness faults 
have also been observed in a significant number of cases of 
failed bearings from various industrial applications [5]. This 
type of faults exhibit degraded bearing surfaces, but not 
necessarily distinguished defects. However, little research has 
been done on detection of incipient generalized roughness 
faults, which will be the objective of this paper.    

The major challenge in current-based bearing fault 
detection is that the fault related signals in the current 
measurements are weak and contaminated by dominant 
components, such as the fundamental component of the 
current measurements. This challenge becomes more serious 
when detecting generalized roughness bearing faults for 
WTG systems because these faults usually do not have a 
characteristic frequency. Wavelet transform [7] offers a 
powerful tool for feature extraction, data compression, and 
noise reduction in signal processing for nonstationary signals. 
Wavelet transform has been applied to detect characteristic 
frequencies of the faults of electric machines [8]-[10]. For the 
detection of generalized roughness bearing faults, which have 
no characteristic frequencies, a wavelet filter can be designed 
to filter out the dominant components in the current 
measurements that are irrelevant to bearing faults to discover 
the subtle fault signature. This however has not been reported 
by anybody yet. 

This paper proposes a novel wavelet filter-based method 
for incipient bearing fault detection using inductor machine 
stator currents. The proposed wavelet filter is based on the 
discrete wavelet transform (DWT) and wavelet shrinkage 
[11]. The latter is a classical algorithm for noise elimination. 
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The remaining sections of the paper are organized as follows. 
Section II describes the proposed method. Section III presents 
the experimental setup and results to validate the proposed 
method for incipient bearing fault detection of an induction 
machine. The proposed method is compared with a Wiener 
filter-based stator current noise cancellation algorithm [12] 
developed by one of the authors of this paper at two different 
load conditions. Results show that the proposed wavelet 
filter-based method is effective for incipient bearing fault 
detection using machine current measurements. 
 

II. STATOR CURRENT WAVELET FILTER 

A. Components of Stator Currents 

In frequency domain, the dominant components of the 
stator currents of an induction machine are the fundamental-
frequency component and its multiple harmonics, e.g., the 
eccentricity, slot, and saturation harmonics, and other 
components from unknown sources including environmental 
noise [13]. These dominant components are not related to the 
bearing faults. In this sense, they are treated as noise in the 
bearing fault detection problem. To discover the bearing fault 
signature, i.e., the fault signal, in the stator current, it is 
desired to remove those dominant noise components from the 
stator current. 

Since the generalized roughness faults do not have 
characteristic frequencies, traditional frequency-domain 
analysis-based methods are not effective to detect these 
faults. In this paper, the energy of the bearing fault signal in 
the stator current is extracted by using a wavelet filter, where 
the energy is defined as the square of the signal. Because the 
vibration of an electric machine is positively correlated to the 
degradation of the bearing, the magnitude of the energy of the 
bearing fault signal indicates the physical condition of the 
bearing. If the amplitude of the energy remains at a high level 
or vibrates with a large magnitude, it means the degradation 
of bearing and maintenance is required. 

B. Wavelet Decomposition 

The continuous wavelet transform (CWT) [14] of a time-
domain signal f(t) is given by: 

1/ 2( , ) ( ) ( )
t b

CWT a b a f t dt
a

ψ− −= ⋅ ⋅               (1) 

where ψ is a wavelet function; a is a scaling parameter; and b 
is a time shifting parameter. For incipient bearing fault 
detection of WTG systems, the DWT [14] is applied by 
discretizing (1) and the result is given by: 

/ 2
0 0( , ) ( ) ( )m mDWT m n a f t a t nb dtψ− −= ⋅ − ⋅         (2) 

where m and n are integers; a0 > 1 and b0 > 0 are constant. 
In the DWT, a wavelet function is associated with a scaling 

function. The wavelet function and the scaling function are 
finite vectors. The original data is decomposed into trend sub-
signals by the scaling function and into fluctuations by the 
wavelet function. The wavelet decomposition is recursive, as 
shown in Fig. 1. This is known as multiresolution analysis 

[15]. Each of the trend sub-signals and fluctuations contains 
the time-domain features of the original data in a finite 
frequency band.  

Assume the wavelet function is W(x) = [w1, w2, ···, w2k] and 
the scaling function is V(x) = [v1, v2, ···, v2k], where k is a 
positive integer. The wavelets and scaling signals need to be 
generated firstly for the wavelet decomposition. The wavelets 
Wi,m are: 
Wi,m = [0,…0, w1, w2, ···, w2k, 0,…0], m = 1,···, Ni-1/2-k+1   (3) 

Wi,m = [w2j+1, …w2k,0,…0, w1, …w2j,], m = Ni-1/2-k+2,···, Ni-1/2
 (4) 

where i = 1, 2, 3,··· is the level of the wavelet decomposition 
in Fig. 1; j is a positive integer, which is smaller than k; the 
length of Wi,m is Ni-1; w1 is the (2m-1)th element of Wi,m in (3) 
and (4). The scaling signals Vi,m are: 

Vi,m = [0,…0, v1, v2, ···, v2k, 0,…0], m = 1,···, Ni-1/2-k+1   (5) 
Vi,m = [ v2j+1, …v2k, 0,…0, v1, …v2j,], m = Ni-1/2-k+2,···, Ni-1/2   

(6) 
where the length of Vi,m is Ni-1; v1 is the (2m-1)th element of 
Vi,m in (5) and (6). 

At each level of the wavelet decomposition, the value di,m 
of each element of the fluctuation Di=(di,1, di,2, …, di,m) is [7]: 

di,m = Ai-1·Wi,m,    m = 1,···, Ni-1/2                        (7) 
where i = 1, 2, 3,··· is the level of the wavelet decomposition 
in Fig. 1; Ai-1 are the decomposed signals of length Ni-1 at 
level i-1; Wi,m are the wavelets at level i generated from the 
wavelet function by using (3) and (4). The value ai,m of each 
element of the trend sub-signal Ai=(ai,1, ai,2, …, ai,m) is [7]: 

ai,m = Ai-1·Vi,m,    m = 1,···, Ni-1/2                        (8) 
where Vi,m are the scaling signals at level i generated from the 
scaling function by using (5) and (6). 

The performance of the DWT depends on the wavelet 
function chosen for decomposition. In this research, the 
Coiflet wavelet is applied due to its feature of vanishing 
moments. The vanishing moments of a wavelet function 
means that several moments of the wavelet function are zero. 
The vanishing moments of the Coiflet wavelet is designed not 
only in the wavelet function but also in the scaling function. 
The following equations illustrate such a feature for a 
continuous Coiflet wavelet [14]: 

∫V(x)·dx = 1;                                    (9) 

∫xl·W(x)·dx = 0, for l = 0, 1, …, L-1;               (10) 

Raw Stator Current Data A0

Fluctuation D1Trend Sub-Signal A1

Fluctuation D2Trend Sub-Signal A2

Fluctuation D3Trend Sub-Signal A3

……

Level 3:

Level 2:

Level 1:

Level 0:

Fig. 1.  The schematic diagram of wavelet decomposition.  
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∫xl·V(x)·dx = 0, for l = 1, 2, …, L–1;                (11) 

                                  N = 3L–1                                       (12) 

where W(x) is the wavelet function; V(x) is the scaling 
function; L is the order of the Coiflet wavelet; N is the 
support length of the Coiflet wavelet. The support length 
measures the effective width of a wavelet function. Equations 
(10) and (11) give the vanishing moments in both the wavelet 
function and the scaling function of Coiflet, respectively. 
Because of this feature, the Coiflet wavelet is of symmetry 
and compactness for numerical analysis applications [16]. In 
this research, the dominant noise components in the stator 
current that are irrelevant to the bearing fault needs to be 
maximally compacted. Therefore, the Coiflet wavelet is a 
good candidate to implement such compaction. 

C. Choosing the Support Length for Wavelet Functions 

The support length is an important parameter of a wavelet 
function. It determines the capability of compacting energy of 
a wavelet function in the DWT. The Coiflet wavelet functions 
with different support lengths are used to design the wavelet 
transform to maintain a close match between the trend values 
and the original signal values [7]. However, there are no rules 
for selecting the support length of the Coiflet wavelet in the 
DWT. Therefore, a pretreatment method is proposed to 
choose the support length of the wavelet function in this 
paper. 

When the bearing is in healthy condition, the Coiflet 
wavelets of different support lengths are applied to 
decompose the stator current data. The one that can compact 
the largest energy of the stator current to a certain percent 
(e.g., 5%) of the whole length of the data is selected as the 
fixed support length of the Coiflet wavelet function for fault 
detection. The resulting Coiflet wavelet is assumed to have 
the most powerful capability to compact the dominant noise 
components of the stator current to a sub-signals through the 
DWT. The schematic diagram of the pretreatment is 
illustrated in Fig. 2, where L is an even integer.  

D. The Proposed Wavelet Filter 

The proposed wavelet filter is based on the DWT and 
wavelet shrinkage. The DWT is used to decompose the stator 
current into different components; and the wavelet shrinkage 
works in a similar way to an adaptive notch filter to remove 

the dominant noise components from the stator current. The 
resulting filtered signal is mainly related to the bearing fault. 

The wavelet shrinkage is a traditional method for filter 
design [11]. In this paper, since the bearing fault signature in 
raw stator current samples is subtle and broad-band, the 
wavelet shrinkage should be operated to cancel the dominant 
noise components, which are irrelevant to the bearing faults. 
The proposed wavelet filter is implemented as follows: 

1) Decompose a batch of stator current samples F(n) = 
[f(1), f(2), ···, f(N)] by using the DWT with a Coiflet wavelet 
and the result is Cf(n) = [c(1), c(2), ···, c(N)], where n = 1, 2, 
···. 

2) Calculate the energy of Cf(n) and the result is E(n) = 
[e(1), e(2), ···, e(N)], where e(i) = c2(i) for i = 1, 2, …, N.  Sort 
the elements of the energy vector E(n) from the minimum to 
the maximum value and the result is Ep(n). 

3) Choose a constant number h, which is approximately 
10% of N; calculate the sum from Ep(1) to Ep(h) and the result 
is Ed, which is assumed to be the total energy of the weak-
energy components in the stator current samples F(n). 

4) Calculate the sum from Ep(1) to Ep(N) and the result is 
Es，which is the total energy of the stator current samples 
F(n). 

5) Normalizing the energy Ed in terms of the total energy Es 
yields I = Ed/Es, where I is defined as an index of the energy 
of the components, i.e., the fault signal, related to the bearing 
fault in the stator current samples. 

The amplitude of I indicates the physical condition of the 
bearing. If the amplitude of I remains at a high level or 
vibrates with a large magnitude, it means the degradation of 
the bearing and maintenance is required. 

The DWT decomposes the original signal into two parts: 
trend sub-signal and fluctuation. The high energy components 
of the original signal are compacted to its trend sub-signal; 
while the fluctuation only contains the weak energy 
components. This is called the compaction of energy, which 
is one of the main characteristics of the DWT [7]. The 
proposed wavelet filter can eliminate the high energy 
components in the stator current, which are the dominant 
noise components irrelative to the bearing faults. Therefore, 
the fault signature can be discovered from the wavelet filtered 
stator current. As the physical condition of the bearing 
becomes worse and worse, the amplitude of the energy of the 

 

 

Fig. 3.  The schematic diagram of the proposed wavelet filter-based bearing 
fault detection algorithm.  

 

Fig. 2.  The schematic diagram of pretreatment for the wavelet filter.  
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fault signal becomes more and more significant, which results 
in the increase of I. There are two reasons to normalize the 
energy Ed in terms of the total energy Es to obtain I. First, the 
normalization can eliminate the interferences from the data 
acquisition equipment and electric machine itself. For 
instance, the ratio of an A/D converter may drift with 
temperature; the electric machine working at different cooling 
conditions may introduce variable stator current patterns. 
Furthermore, WTGs are usually operated under variable 
operating conditions due to the variations of wind sources. 
Only the normalized energy is reasonable to be used as a fault 
index in variable operating conditions.  

The schematic diagram of the proposed wavelet filter-
based bearing fault detection algorithm is illustrated in Fig. 3. 
The notch filters are used to remove the fundamental-
frequency component of the stator current. The low-pass 
filters are used for anti-aliasing. The baseline data are the first 
several samples obtained from the healthy bearing, as it is 
assumed that the bearing is healthy initially. These baseline 
data are used to determine the support length of the Coiflet 
wavelet. 

E. Validating the Wavelet Filter Using Artificial Data 

The proposed method is firstly validated by using artificial 
data. The artificial data consist of two parts. One part 
emulates the narrow-band dominant noise components in the 
stator current that are irrelevant to bearing faults, defined as: 

1

( ) sin( )
M

m m m
m

g n A nω θ
=

= +                   (13) 

where g(n) is the fault-irrelevant noise components; Am, ωm, 
and θm are the amplitude, angular frequency, and phase angle 
of each component. In this paper, four (M=4) different fault-
irrelevant noise components with the frequencies of 60 Hz, 
120 Hz, 180 Hz, and 240 Hz are used. They emulate the 
fundamental stator current and its multiple harmonics. The 
broad-band bearing fault component is assumed to be 
Gaussian noise. A Gaussian noise with a higher magnitude 
means the worse physical condition of the bearing. Therefore, 
the whole emulated stator current s(n)is: 

( ( )) () Gaussias n g n n n= +                   (14) 
where Gaussian(n) is the Gaussian noise. 

One hundred replications of s(n) are generated to emulate 
the degradation of the bearing condition through adding a 
Gaussian noise in each replication. The signal-to-noise ratio 
(SNR) of s(n) reduces linearly from 39.9930 dB for the first 
replication to 39.2758 dB for the last replication. The 
reduction of the SNR leads to the increase of the Gaussian 
noise in s(n). In order to simulate the variable-speed operation 
of a WTG, the amplitude Am, angular frequency ωm, and 
phase angle θm of  g(n) in (13) are randomly varied in a range 
of ±0.2, ±20%, and ±π of their base values, respectively. 

When applying the proposed wavelet filter to the artificial 
data, the 6th order wavelet functions, Coiflet3, is used, and 
the parameter h in Step 3 of the proposed wavelet filter is 
5000. The simulation results are shown in Fig. 4. Fig. 4(a) 

shows the power spectrum densities (PSDs) of four 
replications, which obviously have different dominant 
frequencies with each other. Fig. 4(b) shows the wavelet 
filtered results of the normalized energy of the emulated fault 
component, i.e., the Gaussian noise, which clearly shows that 
the energy of the broad-band fault component increases with 
the number of replications. These results demonstrate the 
effectiveness of the proposed method, namely, the wavelet 
filter is able to detect the increasing energy of the broad-band 
fault component. 
 

III. EXPERIMENTAL RESULTS 

Experiments are carried out to validate the proposed 
method for incipient bearing fault detection of an induction 
machine. The configuration of the experimental setup is 
shown in Fig. 5. The induction machine is driven by a DC 
motor, which emulates the dynamics of a wind turbine. The 
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stator current of one phase is sampled for bearing fault 
detection. This setup uses a shaft current [17], which flows 
through the test bearing to accelerate the aging process of the 
bearing. One stator phase current of the induction machine is 
sampled every 15 minutes. In each 15-minute period the A/D 
converter records data for 10 seconds with a 6 kHz sampling 
frequency. The raw experimental data at two different load 
conditions, i.e., 50% and 33%, in [12] are used to validate the 
proposed fault detection algorithm. The results are plotted in 
Figs. 6 and 7 and compared with those obtained from the 
Wiener filter-based noise cancellation algorithm published in 
[12]. In both cases, the bearings are broken at the final stage 
of the experiments. 

In the pretreatment of the wavelet filter, the 4th and 6th 
order wavelet functions Coiflet2 and Coiflet3 are selected for 
the cases of 50% and 33% load conditions, respectively. The 
Coiflet2 has the support length of 11. The Coiflet3 has the 
support length of 17. The parameter h in Step 3 of the 
proposed wavelet filter is 5000 for both cases, which is 
approximately 10% of the length of one batch of 25-minute 
current samples. 

Both Figs. 6 and 7 demonstrate that the fault index, i.e., the 
normalized energy of the fault signal in the stator current 
generated by the wavelet filter, increases when the bearing 
condition degrades. In the 50% load case of Fig. 6(a), the 
result of the proposed method demonstrates that the 
generalized roughness of the bearing was built up during the 
30th to the 50th hours of the experiment. Form the 60th hour 
to the end of the experiment the vibrations of the fault index 
are kept at a high level due to the developed bearing fault. 
The pattern of the fault index obtained from the proposed 
method agrees with that obtained from the noise cancellation 
method in [12], which is shown in Fig. 6(b). There are two 
notches in the result of Fig. 6(a), which is caused by the 
sudden change of the total energy of the stator current. In the 
33% case of Fig. 7(a), the bearing fault was built up between 
the 10th and 35th hour. From the 40th hour to the end of the 
experiment the wavelet-filtered fault index becomes unstable, 
because of the degraded physical condition of the bearing. 

The wavelet filtered result gives the similar pattern to the 
noise-cancelled result [12] in Fig. 7(b), without the peak at 
the beginning of the experiment. The correlations between the 
proposed wavelet filter-based results and the noise-cancelled 
results of the 50% load case and the 33% load case are 0.69 
and 0.39, respectively. 

 

IV. CONCLUSIONS 

A novel wavelet filter-based algorithm has been developed 
for detecting bearing generalized roughness faults for electric 
machines using stator current measurements. The method 
decomposes the stator current by using the DWT. The fault-
related components in the stator current are located in the low 
energy part of the decomposed sequence due to the subtle and 
broad-band features of these components. The low energy 
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points of the decomposed sequence are then identified and 
added together as the index of the bearing faults by using the 
proposed wavelet filter. Experimental data have been 
obtained from an induction machine with developed bearing 
generalized roughness faults at two different load conditions. 
These data have been used by the proposed method for 
bearing fault detection. The results have been compared with 
those obtained from a Wiener filter-based noise cancellation 
algorithm presented in [12] and have shown that the proposed 
method is effective for incipient bearing fault detection. 
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