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The effect of nanostructuring on the magnetic entropy of materials for room-temperature magnetic
cooling is investigated by model calculations. The materials are structurally inhomogeneous with a
large number of nonequivalent crystallographic sites. In the mean-field Heisenberg model, the
entropy density is a unique function of the local magnetization so that the coupled set of nonlinear
mean-field equations yields not only the magnetization but also the entropy density. Since most of
the entropy is localized near grain boundaries, nanomagnetic cooling requires small feature sizes.
Magnetic anisotropy is a substantial complication, even on a mean-field level, but the corresponding
corrections are often very small. © 2010 American Institute of Physics. �doi:10.1063/1.3367960�

I. INTRODUCTION

Magnetic refrigeration, based on the change in isother-
mal magnetic entropy, is an important development in the
quest for energy-efficient and environmentally friendly tech-
nologies. While some elements, especially Gd, exhibit an
appreciable magnetocaloric effect, there is a trend toward
complex magnetic structures, such as ternary compounds,1,2

ultrathin films,3 and small-scale granular nanostructures.4,5

This structuring helps to improve the performance of the
materials by maximizing the entropy change, suppressing
hysteresis looses, adjusting the operation temperature, and
reducing the required magnetic field.

Figure 1 illustrates the local spin structure involved in
the cooling process. A magnetic field aligns the spin �left�
and subsequent field removal causes the spins to disorder
�right�. Microscopically, the spin disorder is realized by the
interaction with a heat bath �random thermal motion of at-
oms�. For isolated atoms �paramagnetic ions�, the effect is
limited to low temperatures because the temperature equiva-
lent of the Zeeman energy −gJ�B�oH is only about 1 K for
typical fields of order �oH=1 T. This means that typical
laboratory-scale magnetic fields are not able to realize room-
temperature saturation. Alternatively, huge magnetic fields
�around 100 T� are necessary to operate such a system at
temperatures of technological interest.

The are two basic ways to increase the operation tem-
perature. The traditional way is to use first- or second-order
phase transitions where the interatomic exchange Jex en-
hances the effect of the magnetic field.1,2 In the vicinity of a
second-order phase transition �T�Tc�, the entropy is associ-
ated with critical fluctuations, which are suppressed by a
magnetic field. First-order transitions help if they occur at a
temperature where the involved phases have substantially
different entropies. For example, a transition from a ferro-
magnetic �FM� to a Pauli-paramagnetic phase is not very
helpful because both phases have low entropies. An addi-

tional consideration is structural and/or magnetic hysteresis
which creates heat during thermodynamic cycling and is
harmful in any system.

We plan to exploit phase-transition effects but our main
interest is to use granular and thin-film nanostructures.4,5

Embedding FM nanoparticles, such as bcc Fe, fcc Co or
D03-ordered Fe3Si, in a matrix corresponds to the use of
large “macrospins” J�N, where N is roughly equal to the
number of atoms in the cluster or particle. The matrix con-
sists of a magnetic material with an ordering temperature
near room-temperature, for example, a Gd- or Mn-containing
alloy.

The main effect of the nanostructuring is that J�N re-
duces the magnetic field necessary for saturation H�1 /N.
The entropy S increases with N, but this increase is only
logarithmic and overcompensated by the large heat capacity
C�N, and it is not possible to use big particles. In fact, even
for noninteracting particles,4 N=300 is sufficient to ensure a
substantial spin polarization in a field of 1 T.6 A related point
is the effective range of the exchange interactions.
Exchange-coupled nanocomposites containing a phase with a
high Curie temperature �TH� and a phase with a low Curie
temperature �TL� have a single Curie temperature Tc�TH.7,8

However, between TL and Tc, the spontaneous magnetization
decays exponentially in the TL phase, and a similar behavior
may be expected for the entropy density �=dS /dV.

In this paper, we investigate how the entropy density is
affected by the nanostructuring. We use an isotropic mean-
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FIG. 1. Entropy change caused by the removal of an external magnetic field.
The enhancement of the entropy S, visualized by snapshots of an atomic
spin at different times �right�, requires heat �TS�, and this heat is taken from
the environment that surrounds the spin.
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field model to investigate ��r� near interfaces and discuss
how the entropy density is affected by magnetic anisotropy
and by critical fluctuations.

II. MODEL AND RESULTS

The structures are modeled by considering many crystal-
lographically nonequivalent sites �index i� with different
thermally averaged magnetizations mi= �si� or mi= ��i� /�is.
For example, the local magnetization mi in a particle depends
on the distance from the surface.9 This leads to a spatial
distribution of the entropy density ��r��S�Ri�=Si whose
sum or integral enters relations such as ��S /�H�T

= ��M /�T�H. The mean-field partition function Z�H /T� yields
the local entropy Si as a unique function of the average local
magnetization m�r�

�mi� = B�i��hi + 	jJij�mj�
kBT


 , �1�

where B�i� is the Brillouin function of the ith atom and
hi-�o�iH. �Here we use B�i� rather than BJ or BS to avoid
confusion with the entropy S and the exchange J�. Each non-
equivalent site contributes one nonlinear equation, as illus-
trated in Fig. 2, and the resulting temperature dependence of
the magnetization curves may differ qualitatively from the
predictions of the homogeneous mean-field theory.7

In terms of inverse Brillouin functions B�i�−1, the en-
tropy per atom is

Si = kB ln Z�B�i�−1�mi�� − kBmiB�i�−1�mi� . �2�

This function decreases with increasing mi from kB ln�2Ji

+1� at mi=0 to 0 as mi approaches saturation. In the spin-1/2
Ising model, BJ

−1�m�=atanh�m�, S�T=0�=kB ln�2�, and, for
small local magnetization mi, Si=kB�ln�2�−mi

2 /2�. Figure 3
illustrates the dependence of S on m for this spin-1/2 Ising
case. These equations mean that the picture of Fig. 1 can be
generalized to complicated alloys and nanostructures.

Equation �2� reduces the problem of entropy determina-
tion to the simpler problem7,8,10,11 of finding the local mag-
netization mi as a function of H and T. For example, com-
posite thin films such as Cr/Co,3 each layer has a different
magnetization mi, and the individual layer magnetizations
exhibit an additional lateral modulation due to the anti-FM
�AFM� interactions of the Cr. The entropy density is deter-
mined by solving the system’s coupled mean-field equations.
It rapidly decreases from the interface,7,9 and the decrease is
described by exp�−2z /R�, where R��1-T /Tc�−� is the corre-
lation or localization length in the corresponding phase.

Figure 4 shows local magnetization for a simple FM-
AFM thin-film structure. The model film has four nonequiva-
lent sites, two in each layer, so that Eq. �1� reduces to a set of
four nonlinear equations. In the case shown in Fig. 4, the
AFM interactions are sufficiently strong to yield an AFM
spin polarization of the FM phase. The spin structure and the
entropy depend on the involved inter- and intraplane ex-
change interactions. In Fig. 4, the entropy does not show any
unusual features but the interactions can be used to move the
operating temperature into a convenient range, as in the
Cr/Co system.3

In other cases, the interatomic coupling strongly sup-
presses the magnetic cooling. Figure 5 shows the spin struc-
ture of a isotropic two-sublattice antiferromagnet �i=1,2�

FIG. 3. Entropy density as a function of the local magnetization. The solid
curve is based on the mean-field solution of the spin-1/2 Ising model. The
dashed line shows the harmonic approximation Si=kB�ln�2�−mi

2 /2�.

FIG. 4. Schematic spin structure at the ordering temperature. The phase
with the higher ordering temperature �here AFM� imposes its spin structure
and entropy density onto the FM phase at the bottom.

FIG. 5. Isotropic antiferromagnet with two sublattices i=1,2 in �a� zero
field and �b� nonzero field. A small field causes the magnetization to switch
by about 90° �b�.

FIG. 2. Atomic entropy contributions. The interatomic exchange determines
the local magnetization and, indirectly, the entropy contribution of each
atom. The case of arbitrary solids includes magnetic multilayers and granu-
lar magnetic nanostructures.
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with negative intersublattice and zero intrasublattice ex-
change in a weak magnetic field. The magnetization angle �,
defined in Fig. 5, depends on the ratio of field to exchange
but is independent of temperature. This means that �
=const. below TN �Ref. 10� and ��M /�T�H=�S /�H=0. Con-
sequently, the magnetic field affects the internal energy �ex-
change� but leaves the entropy unchanged.

III. DISCUSSION AND CONCLUSIONS

Entropy expressions similar to the above-discussed
equations have long been used to derive and discuss equa-
tions of state for homogeneous magnets,10 but the local char-
acter of S and the unique relation between S and m are non-
trivial. The local character of the entropy is a mean-field
property whereas the uniqueness reflects the isotropic char-
acter of the model. Magnetic anisotropy has a huge impact
on macroscopic magnetic properties from the ordering
temperature12 to hysteresis and coercivity. However, on an
atomic scale, the magnetic anisotropy and its contribution to
the mean-field entropy are small. This is because the tem-
perature equivalents of the anisotropy energy per atom, about
1 mK for soft-magnetic materials and about 1 K for hard-
magnetic materials,7,13,14 are much smaller than typical or-
dering temperatures of several 100 K. There are cases where
anisotropy and exchange energies are comparable, such as
some rare-earth magnets15 and surface alloys,16 but these ma-
terials have very low Curie temperatures and are not suitable
for interest in room-temperature magnetic refrigeration.

Near a second-order phase transition, the long-range
character of the critical fluctuations means that the entropy
density is no longer a function of the local magnetization.
However, as in the mean-field case, the corresponding corre-
lation length scales as a�1-T /Tc�−�, where a is the interatomic
distance and Tc�r��zJ is the “local” Curie temperature.7 Un-
less the involved phases have very similar Curie tempera-

tures, the thermodynamic correlations decay very rapidly in
each phase and Eq. �1� is a good approximation for nano-
structured magnets.

In conclusion, our mean-field analysis shows that nano-
structuring affects the entropy density of magnetocaloric ma-
terials via the local magnetization, mirroring the generally
inhomogeneous local magnetization. The anisotropy has a
great impact on the macroscopic properties, including mag-
netic ordering, but on a local scale, it is often a small correc-
tion to the leading isotropic entropy contribution.
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