# Advancing MVAC-LVAC Power Conversion for Next Generation Data Centers

networking equipment

Tyson Klein, Dr. Jun Wang

Department of Electrical and Computer Engineering





### Background and Motivation

#### **Current Data Centers**

Traditional data centers use 60Hz MVAC (e.g., 4.16 kV) stepped down to low voltage DC (400-800 V).



### 2 Power Consumption Projection



- > Today's electrical infrastructure is outdated and not designed to handle emerging high-density energy demands.
- With increasing technology, industry leaders are working to redesign power architectures that improve efficiency, scalability, and reliability.



### Solid State Architecture 4160 VAC Transformer 800VDC **Cascaded H-Bridge 1.2 kV DC** Rectifier **Intermediate Bus** $L_m$ CLLLC Converter

> 3-phase input rectified using cascaded H-Bridge.

Next-Gen

- Each phase uses 9 H-bridge cells-19 level staircase wave.
- Cells operate at low voltage > reduced stress per switch.
- Dual-active bridge topology with **CLLLC tank**. Operates under ZVS for
- reduced switching loss. Galvanic isolation + bidirectional power flow.

#### Same high –frequency resonant LLC as in current design.

LLC

Converter

- Supports SST-wide soft-switching and galvanic isolation at 800 → 48 VDC.
- delivery. 1 Projected Efficiency

SST (CHB + CLLLC) LLC Converter Multiphase Buck

(97-99%)97%

Multiphase

Buck

48VDC | Converter

<u>Upstream:</u>

Identical interleaved

Instead steps down

Skipping **12V** rail

simplifies power

reduces losses and

48VDC → 1VDC in one

buck design.

step.

**Total**:

### Limitations

- Multiple conversion stages (AC/DC/AC) → compounding losses
- **Bulky infrastructure** → longer build
- Low efficiency (Power density  $<0.5MW/m^3) \rightarrow$  increased cost/waste

98%

97%

**95**%

90%

76.5%

**Current Efficiency** 

**SVPWM Boost Rectifier** LLC Converter Flying Capacitor Converter Multiphase Buck

**Projected Path** 

Reduce number of conversion stages  $(5\rightarrow 3)$  - improve total efficiency

► Step (4.16 kV AC → **800VDC**) in one stage

## Design Comparison

#### **Next-Gen** Current 3 stages ~ **96%** 5 stages ~ 91% upstream efficiency upstream efficiency Modular Solid State Transformer – scalable and scalability serviceable Optimized for Bulky/slow replication Al/server GPU loads

### Acknowledgements

This work was supported by the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln.

Special thanks to faculty sponsor Dr. Jun Wang.