Integrating Genomics and Thermodynamics to Explore the Subsurface
Microbial Impacts on Hydrogen Dynamics
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Our new modeling framework paves the way for predicting microbial and hydrogen interactions in the

. . H tion significantl ds CO
deep subsurface by unprecedented data integration. 2 consumption signiticantly exceeds CO;

* We developed a dynamic microbial community model focused consumption, and acetate remains low

Background & Motivation on H, and CO, metabolism, incorporating three most abundant Our model shows H, is consumed at a significantly higher rate
organisms that were studied in an experiment [3]: than CO,, and acetate concentration does not increase
- Hydrogen is a highly energy-dense, zero-carbon fuel whose two H,-consuming Ve | significantly due to its consumption by Pseudomonas (Fig. 4),
conventional production from methane is both costly and CO,-intensive. autotrophs ™ CH, similar to the findings in the methanogenesis paper [3].
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Lincoln (Fig. 1), offers a clean, ” Pseudomonas Acetate

geologically stored alternative;
iIf tapped, it could significantly
bolster Nebraska's energy
economy and drive regional

stutzeri (Fig. 2). 0.002

Figure 2: Conceptualization of
microbial metabolic interactions
among the three species.
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Figure 4: Our model simulation results for metabolite dynamics, especially H,

dynamics, but little is known Despite Acetoanaerobium having a higher maximum growth rate, its

- . Figure 1: Map of the Midcontinent Rift showi -
about their interactions. forsterie-rich zones beneath Nebraska and Lincoln [1]. lower energy yield compared to Methanobacterium means actual growth Conclusions and Path Forward
. . can be slower when energy availability is limited. Maintenance energy
Objectives & Approach requirements (me) are similar across all three microbial species (Table 1). Our integrated genomics and thermodynamics model

effectively addresses the challenge of
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Table 1: Key parameters in the three-member microbial community model parameterization in microbial growth models.

 We use computational models to understand how microbes produce and : _
consume the underground H, and identify metabolic byproducts (such as Species max max substrate Energy yield  maintenance

. . . . . ilizati (mol ATP . i i i
organic acids) that could potentially affect reservoir integrity and cause fartzvl':_?) Ut'"zit'o_" ratf Isubstrate inergy ) The mo.del clgarl_y_ |IIustrqtes how microbial _
hydrogen loss. (mol-X h " g-biomass ) consumed) (kJ h "g-biomass ") interactions significantly influence hydrogen dynamics
Methanobacterium 0.042 0.041 0.75 0.08 In subsurface environments and has broad

« Traditional modeling approaches are ineffective, partly due to a number of A Noterae 0.201 0.0056 111 0.05 applicability in general microbial community modeling.

Kinetics parameters, the identification of which requires substantial amount - St o 1o 006 o s . The model clearly illustrates how microbial

of experimental data. | | | | ' interactions significantly influence hydrogen dynamics
o i i i i i . . . : In subsurface environments.

Tht'ﬁ 'SSUSS tr’_fecontfsteve” mtorel tse”glus_for m'Cr_Oorg?”l'T”t‘)S S‘t‘t‘_’h as those Our model is more consistent with the experimental data,

in the subsurface that are not culturable in experimental lab settings. .- N

P J compared to traditional kinetic models Reference
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Codon Usage Bias (CUB) as proxies for microbial growth using tools as . . .
. . . iInstance, P. stutzeri can grow using acetate produced by A. noterae, . |
gRodon/Phydon, then use thermodynamic information to get metabolic despite A. noterae itself only maintaining its biomass (Fig. 3B) Y Fuang XLy '\els(’BKOhtZi\JA'(’zl\(;“znzte)r’ icrobial methare procuciion from
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rates. The workflow of our mOde“ng approach Is shown in Flgure 2. calcium carbonate at moderately alkaline pH. Research Square (Research
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Figure 2: Workflow of incorporating thermodynamics and kinetic parameters to model a dynamic microbial community. Figure 3: Traditional model vs our model simulation results for microbial dynamics I\
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