Discovery of Multiple Element Alloys (MEAs) for Enhancing the Resistance to Hydrogen Embrittlement

Md Rezwan Ul Islam¹, Bingqiang Wei¹, Luke Wadle¹, Joseph Talley¹, Bai Cui¹, Jian Wang¹ Mechanical & Materials Engineering Department, University of Nebraska Lincoln¹

Introduction

☐ Issues with Current Cladding Material (Zircaloy):

☐ Goal:

• Understanding the underlying mechanisms that facilitates the design and development of metallic alloys that enhance resistance to Hydrogen Embrittlement (HE)

Materials & Methods

□ C35M Alloy Composition

Alloy designation	Nominal composition, wt.%	
C35M	Fe-13Cr-5Al-2Mo-0.2Si-0.05Y	

☐ C35M Alloy Preparation

Materials & Method

- ☐ Cathodic Hydrogen Charging condition
- Concentration measurement Sample were charged for 2 hours at 50 mA/cm²
- Mechanical Tests samples were charged for 4 hours at 10 mA/cm²

□ Concentration measurement

Results & Discussion

□H-Concentration Measurement:

- ☐ Tensile Test & Fracture Surface of Macro Samples:
- Significant reduction of Strain due to hydrogencharging.
- H-charging changes failure mechanism from ductile fracture (dimples) to brittle fracture (intergranular fracture along GBs).

Results & Discussion

☐ EBSD of Uncharged C35M & Micropillar Fabrication:

☐ Micropillar compression test:

Results & Discussion

• The {110} slip system may have a dislocation core that is more prone to hydrogen segregation.

Table 1. Measured CRSS for different slip systems with and without H

CRSS	Without H	With H	
{110} slip system	220 MPa	240 MPa	
{112} slip system	230 MPa	210 MPa	

Future Research Plan

 In our following study, Density Functional Theory (DFT) calculations will be performed to reveal the underlying mechanism

Acknowledgement

This work was supported by the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln

References

1] J. Yao, D.D. Macdonald, M. Macdonald, F. Cao, C. Dong, *Materials & Corrosion* **2019**, *70*, 838.

[2] B. Wei, D. Xie, W. Wu, L. Shao, J. Wang, *JOM* **2022**, *74*, 4035.

