

Machine Learning-Based Modeling of HAP Emissions from Corn Ethanol Fermentation Process Aida Rashidi¹ and Bruce Dvorak¹

Introduction

Fermentation emissions include carbon dioxide (CO₂), ethanol, and regulated (carcinogenic) hazardous air pollutants (HAPs), which vary in concentration throughout the fermentation cycle.

Figure 1. Fermentation Process

- On an industrial scale, HAP production and emission amounts are inconsistent in each batch and fermentation tank.
- Treatment is demanding in natural gas and water (6 to 12% of a plant's overall energy).
- Conventional optimization approaches are limited in considering all involved parameters.
- Machine Learning models can identify the correlations and patterns using high-dimensional and non-linear data from fermentation processes.

Objectives

Utilize machine learning models to:

- Optimize scrubber water and chemical additives usage.
- Optimize operating conditions for emission control systems.
- Develop more accurate and adaptable models of overall plant operations for the fermentation emissions predictions.

Methods

Finishing the 8th month of a 2-year research project focused on HAP emissions from the ethanol fermentation process, the following stages are in progress: 1. University of Nebraska-Lincoln, United States of America

Stage 1: Data Collection

• Collecting time-series data on the fermentation process para and emissions that will be used in the next modeling stages.

Figure 2. First 30-hour Sampling of One Fermentation Cycle Stage 2: Machine Learning Modeling

rameters	
a	

Stage 3: Chemical Process Simulation Model

- Using collected data to develop computer simulation models of fermentation processes and reactions.
- Using the simulations for the effectiveness evaluation new emission control strategies.
- Identifying energy, water usage, and carbon intensity optimal approaches.

Anticipated Results

General Predicting Model:

- Approach A: *Inputs:* Ethanol Yield, Process Conditions temperature. *Outputs:* Ethanol (gas), CO₂, HAPs
 →Chemical process modeling.
- Approach B: *Input:* Process Conditions, temperature, CO₂, Ethanol(gas). *Output:* HAPs, Ethanol Yield → Identifying key correlations.
- **PEMS (Predictive Emission Monitoring Systems)**
- Model: Modified models for specific fermenters:
- Input: Specific Process Conditions. Output: HAPs
- Potential Infections Prediction
 - *Inputs:* Liquid stream data, temperature, HAPs, *Outpu* Ethanol Yield

Potential Benefits

- The predictive models have the potential to improve the emission treatment of ethanol plants and reduce water, chemical, and energy usage.
- These models can reduce the greenhouse gas emissions through energy reduction.

Acknowledgments

This work was supported by the Nebraska Public Power District through the Nebraska Cent for Energy Sciences Research at the University of Nebraska-Lincoln.

1
n of
J
s,
ıt:
.OLANUN
OF Colp