
Motivation

• Radio fingerprinting is crucial for wireless device identification in

various applications.

• It works by analyzing hardware imperfections in RF signals to create

unique device "fingerprints."

• Previous approaches using machine learning have shown poor

performance in adversarial environments, particularly in cross-day

scenarios.

• Our proposed solution is a deep-learning approach that utilizes

complex-valued activation functions to capture phase information in

addition to amplitude.

• We also explore different pre-processing techniques and hyperparameter

tuning to improve our approach's robustness to different scenarios.

Methodology

• A complex deep-learning method for radio signal analysis was

proposed in order to improve device identification accuracy in

adversarial environments.

• Experiments were carried out to evaluate deep neural network models

with various complex activation functions, such as modReLU, CReLU,

and ZReLU.

• To enhance robustness, we investigated various pre-processing

techniques and hyperparameter tuning on various parameters such as

stride (s), trace length (L), and window size (w). The classification

model's performance was evaluated using the accuracy rate as the

performance measure. The number of layers in the neural network

model was also changed to improve model performance.

• The performance metrics were used to compare the efficacy of deep

neural network models with various complex activation functions and

pre-processing parameters. The outcomes were examined in order to

identify the best model for device identification in adversarial

environments.

Preliminary Experiment

• The study used a USRP 2922 testbed and VERT2450 Antenna with two transmitters and a receiver

to collect radio frequency data. The data was obtained through Wi-Fi transmissions with BPSK 1/2

modulation at a center frequency of 2.45 GHz, a 2 MHz bandwidth, and a 2 MHz sampling rate.

Open-source GNU Radio code was used for data collection.

• The receiver was positioned one foot away from the transmitter, and both remained static. Data

were collected for two days in a lab environment with three transmissions per day, each separated

by one minute and a 15-second break.

• I/Q samples were taken at four points on the receiver side to capture the data: before FFT

(frequency domain), after FFT (time domain), after equalizer (equalized), and metadata. Each

transmitter broadcasted signals that were recorded for one minute, resulting in approximately

1,667 I/Q traces collected for each transmission from each transmitter.

• The experiment's training and testing phases used I/Q traces collected on Day 1 and Day 2,

respectively, while Day 3 was used to evaluate the classifier's performance. To gather data, 5,000

I/Q traces were extracted from each transmitter.

• The collected I/Q traces were randomly split into three sets for training, validation, and testing

purposes, with 64%, 16%, and 20% of the traces being allocated to each set, respectively, for each

experiment conducted.
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Preliminary Results

Table I

After FFT (frequency domain)  L = 288 and w =64

Same-day Cross-day

modReLU CReLU ZReLU modReLU CReLU ZReLU

S=0.5 L

0.49 0.5 0.49 0.45 0.48 0.44

S=2L

0.5 0.51 0.48 0.4 0.49 0.45

S=L

0.45 0.54 0.48 0.41 0.44 0.44

Table II

After FFT (frequency domain)  s = 288 and L=288

Same-day Cross-day

modReLU CReLU ZReLU modReLU CReLU ZReLU

w=64

0.51 0.51 0.51 0.44 0.52 0.4

w=128

0.5 0.55 0.54 0.41 0.5 0.44

w=256

0.52 0.54 0.47 0.41 0.54 0.44

Key Contributions

1. Direct use of complex numbers: Rather than converting complex

numbers from two distinct arrays of floats, we passed complex

numbers directly into the model.

2. Collection of a comprehensive dataset: We gathered a

comprehensive dataset for Wi-Fi data at various locations,

including before and after the Fast Fourier Transform (FFT),

equalized, and with metadata.

3. Investigation of various complex activation functions and network

architectures: Deep neural network architectures with various

amounts of layers were investigated.

4. Extensive hyperparameter tuning: To enhance the efficacy of the

model, hyperparameter tuning was carried out by adjusting

variables like stride, length, and window size.

Figure 1: Testbed setup using USRP 2922 platform with 2 transmitters and 
1 receiver, all running GNU Radio.

Future Works

1. We plan to collect data from a greater number of USRP devices,

including both static and moving devices to capture a wider range

of environmental data.

2. We aim to enhance our approach by utilizing more advanced

techniques, such as the triplet network for training and testing, as

well as the Generative adversarial network model.

Figure 2: After FFT (frequency domain) L = 288 and w 

=64, same-day and cross-day accuracy for different 

complex activation functions

Figure 3: After FFT (frequency domain) s = 288 and L = 

288, same-day and cross-day accuracy for different  

complex activation functions
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