

Introduction and Objectives

Biochar is an organic material produced as a result of the pyrolysis of carbon-based biomass and organic waste. It is a sustainable material obtained by heating biomass i.e., plant materials, agricultural residues, biomass from wood, solid wastes, etc. Objectives of the study:

- Feasibility of biochar application in concrete
- Mechanical properties
- Cost and environmental analysis

Parameters Evaluated

- Cement content reduction
- Biochar addition levels

Experimental Program

Mixture Design						
Mixture ID	Cement (pcy)	Water (pcy)	Coarse Aggregate (CA) (pcy)	Fine Aggregate (FA) (pcy)	Biochar (pcy)	Water Reducer (WR) (fl oz/cwt)
C632	632	260	1136*	1631		
C601	601	247	1163*	1699		3.4
C569	569	234	1195*	1724		6.8
C537	537	221	1231*	1767		7.2
C632-B5	632	260	1136*	1631	32	8.8
C601-B5	601	247	1163*	1699	32	16
C569-B5	569	234	1195*	1724	32	22
C537-B5	537	221	1231*	1767	32	18
RCA-BO	632	260	1190**	1452		
RCA-B5	632	260	1190**	1452	32	8.8
RCA-B10	632	260	1190**	1452	64	26.4
RCA-B15	632	260	1190**	1452	96	40

* Natural Aggregates

Cement Content (in pcy) C601-B5

Biochar addition of 5% by wt of cement

** Recycled Concrete Aggregates (RCA) Recycled Concrete Aggregates RCA-B5

Biochar addition of 5% by wt of cement

Concrete Mixing Procedure (ASTM C192)

- 1. CA+30% water w/ WR (if needed), mix for 30 sec
- Biochar, mix for 30 sec
- 3. FA, cement, and 70% water, **mix for 3 min**
- 3 min rest, followed by final mix for 2 min

Properties

- Workability (ASTM C143)
- Compressive strength (ASTM C39)
- Splitting tensile strength (ASTM C496)
- Modulus of Elasticity (ASTM C469)
- Microstructure (SEM)
- Chloride ion penetration (AASHTO TP 95-14)
- Drying shrinkage (ASTM C157)
- Freezing -Thawing resistance (ASTM C666)

- $\widehat{\boldsymbol{\mathsf{X}}}$

Low-Carbon Biochar-Incorporated Concrete

Islam Orynbassarov¹, Temirlan Barissov¹, Seunghee Kim¹, Adam Smith² and Jiong Hu¹ ¹Department of Civil and Environmental Engineering; ²Nebraska Forest Service

Production, Results and Discussion

120

100 xpx 80

(\$)

Cost

20

- the nucleation effect and reduced effective w/c.
- 15%) results in a higher cost of concrete due to the high unit cost of biochar and demand on WR.
- the CO_2 -eq of concrete by 30-84%.

Grinding

Grounded Biochar

Addition of biochar can compensate for cement reduction in concrete and results in higher strength compared to the mixtures without biochar due to

A comparable cost at lower biochar incorporation can be obtained at 5% biochar content (mass of cement). However, higher biochar addition (10-

Biochar incorporation can significantly reduce the carbon footprint of concrete. 10-15% of biochar incorporation (by mass of cement) can reduce

- Cement content reduction in concrete can be compensated by biochar addition at replacement levels of up to 15%.
- Biochar incorporation increases the strength by about 9% on average due to the nucleation effect and reduced effective water-to-cement ratio (w/c).
- Using biochar in high volume requires a high amount of WR, which leads to a decrease in early-age strength
- Cement reduction reduces the cost of concrete slightly only due to the high demand for WR used to compensate for workability loss.
- Cost of biochar concrete is comparable at lower biochar addition levels and high carbon credit prices, but a high volume of biochar increases the cost of concrete due to the high unit cost of biochar and high demand on WR.
- Cement reduction by 5%, 10, 15% can reduce CO₂-eq by roughly 4%, 9% and 14%, respectively.
- 5% of biochar addition into concrete with 5-15% cement reduction can reduce the CO₂-eq by 15.8-44.3%.
- Addition of biochar in 10-15% of the mass of cement can reduce the CO_2 -eq by 30-84%.

Acknowledgement

This project supported by was Power Nebraska Public District (NPPD) through the NCESR (Nebraska Center for Energy Sciences Research (NCESR) at UNL

