Bottom-up Synthesis of 2D Polymers and Frameworks for Gas Separation

Christopher Merkel, Syed Ibrahim Gnani Peer Mohamed, and Siamak Nejati College of Engineering, University of Nebraska-Lincoln

MOTIVATION

Vacancy, Co, Ni, Fe, Mn, Cu

Covalent organic frameworks (COFs) represent organized and intrinsically porous networks constructed using a variety of organic units. These materials are made of organic blocks containing light elements and are linked by strong covalent bond.¹ This study focused on the unit Tetrakis(4-aminophenyl) porphyrin(TAPP). This unit is porphyrin-based and forms vacancy zones in its polymer framework that are ideal for separations. The porphyrin center can be used to intercalate a metal ion and has been shown to be an effective catalyst for oxygen reduction ⁷. Despite the promising properties of COFs, their applications are hindered by their processability.²⁻⁷ This study measured permeability and selectivity of TAPP membranes for H2 separation and proposes a method of vapor phase polymerization to increase using processability and performance of TAPP based frameworks in separation and catalytic applications.

Figure 1. Porphyrins and their derivatives are among the building blocks of COFs. SYNTHETIC METHODS **Electro-polymerization of TAPP Figure 2**. Polymerization mechanism of TAPP through amine coupling reactions. Potentiostat 100 RE CE WE -0.2 0.0 0.2 0.4 0.6 0.8 Electrolyte solution Potential (V vs. Ag/AgNO₃) Figure 3. Preparation of pTAPP via electro-polymerization pTAPP Membrane on PES Support Free-standing pTAPP KOH/H₂O ITO

Electrodepositd pTAPP

