THE ENVIRONMENTAL IMPACT OF HAND SANITIZER ETHANOL

Gabe Cohen, Katie Mowat, <u>Nathan Kreutzer</u>

Advisor: Dr. Bruce Dvorak & Dr. Ashraf Aly Hassan

NEBRASKA CENTER FOR ENERGY SCIENCES RESEARCH

Nebraska Public Power District

Always there when you need us

AGENDA

• BACKGROUND

- PROJECT OBJECTIVES
- Methods
- DATA, RESULTS, & CONCLUSION

BACKGROUND

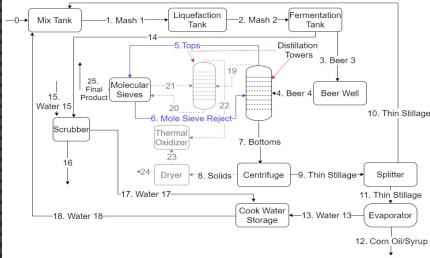
- Covid 19 increased hand sanitized demand
- ISOPROPANOL SHORTAGE
- ETHANOL IS A SUITABLE REPLACEMENT FOR ISOPROPANOL
- Ethanol must meet USP grade standards
- The FDA temporarily raised the USP grade standards

Compound	Interim Limits (PPM)	Standard Limits (PPM)
Acetal	50	*10
Acetaldehyde	50	*10
Methanol	630	200
Benzene	2	2
Sum of All Other Impurities	300	300

* Acetal and Acetaldehyde concentrations combine under standard limits

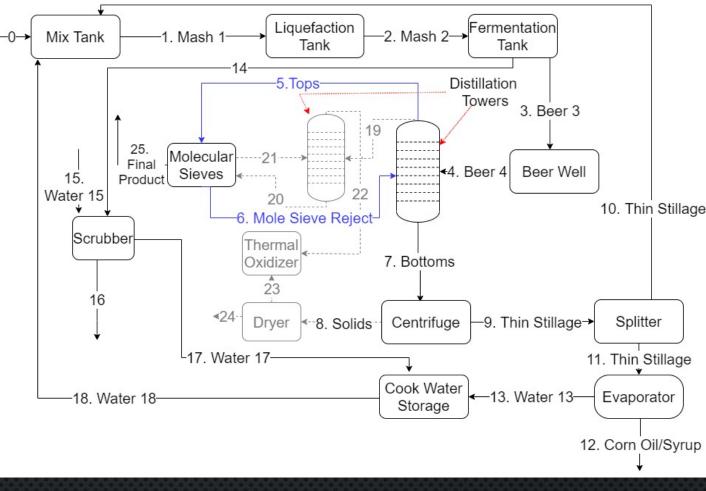
PROJECT OBJECTIVE

Help Ethanol Plants Meet USP Grade Specifications


- Identify location of various impurities produced during fermentation
- Help engineers determine new methods of ethanol purification
- Help optimize unit operations

Identify Streams for Use in Innovative Waste Treatment Methods

- Bio scrubbers require a specific nutrient solution
 - Total Nitrogen(TN), Total Phosphorous(TP), Total Suspended Solids(TSS), pH, Chemical Oxygen Demand (COD)


Environmental Impact of USP Grade Ethanol Production

- Determine if hazardous air pollutants are expected to increase
- Determine if CO, production is expected to increase
- Determine if water consumption is expected to increase

METHODS

PROCESS SAMPLES

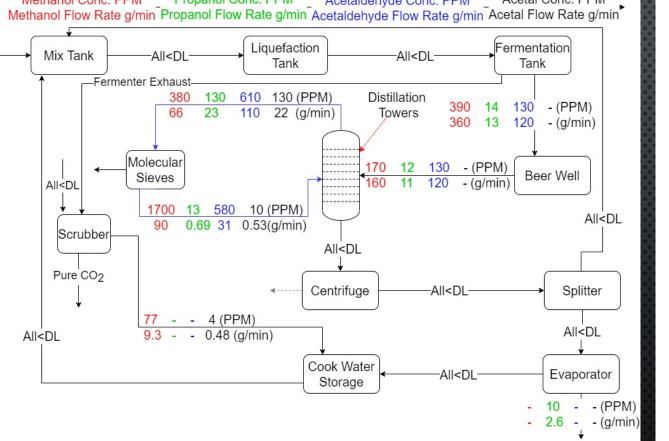
- 17 SAMPLES COLLECTED
- Major 2 types of ethanol plants
 - FOLLOW BLACK AND BLUE PROCESS LINES (ETHANOL PLANT WHERE SAMPLES WERE TAKEN)
 - Follow black and gray process lines
- Assume most ethanol plants will have similar stream characteristics

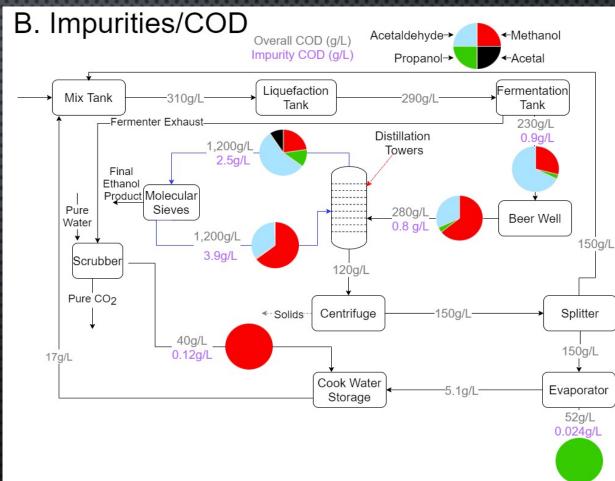
IMPURITIES ANALYSIS

- Impurities tested for
 - Acetaldehyde, Acetal, Propanol, Methanol
- SAMPLES CONTAINING HIGH TSS ARE CENTRIFUGED
 - Mash 1, Mash 2, Beer 3, Beer 4, Bottoms 7, Thin stillage 9/10/11, and corn oil/syrup 12
 - SUPERNATANT AND SOLIDS ARE TESTED SEPARATELY
- Vacuum assisted sorbent extraction (VASE) in conjunction with GC/MS are used
 - 2 mL liquid samples
 - 1 G solid samples
 - VACUUM SET TO 30 MMHG
 - Samples are placed in a 5600-SPEC for 3 hrs at 70° C and 200 RPM
 - Samples are cooled for 10 minutes
 - VASE pins are placed in the GC/MS

WATER CHEMISTRY ANALYS

- TOTAL PHOSPHOROUS (TP)
 - TNT 844 VIAL PHOSVER®3 ASCORBIC ACID METHOD WITH ACID PERSULFATE DIGESTION
- TOTAL NITROGEN (TN)
 - TNT 826 & 828 vial by Hatch Method 10208 Determines Persulfate Digestion Method
- CHEMICAL OXYGEN DEMAND (COD)
 - TNT 820 VIAL BY THE REACTOR DIGESTION METHOD
- The previous samples are analyzed using a Hatch DR2800
- TOTAL SUSPENDED SOLIDS (TSS)
 - Analyzed using the standard waste water analysis technique




DATA, RESULTS, & CONCLUSION

IMPURITIES

Methanol Conc. PPM

A. Impurities Concentration and Flow Propanol Conc. PPM Acetaldehyde Conc. PPM

Detection Limit – COD = 1.0 mg/L, Acetaldehyde = 7.5 mg/L, Propanol = 5 mg/L, Methanol = 9 mg/L. Acetal = 5 mg/L

Acetal Conc. PPM

WATER QUALITY

Stream	Name	TN (g/l)	TP (g/l)	TSS (g/l)	pН	Fermentation			
1	Mix Tank Mash	5.2 ± 0.3	3.9 ± 0	110 ± 30	5.4				
2	Liquefaction Tank Mash	5.6 ± 0.7	3.0 ± 0.1	99 ± 3	5.3	Ferm Exhaust			
3	Fermentation Tank Beer	7.3 ± 0.1	4.7 ± 0.1	79 ± 6	4.7	5.Tops Distillation	10. Thin Stillag		
4	Beer Well Beer	6.3 ± 0.2	41 ± 0	83 ± 11	4.1	5. lops Towers 3. Beer 3			
5	Column Tops	8.3 ± 1	<dl< td=""><td><dl< td=""><td>4.5</td><td>Final Molecular</td><td></td></dl<></td></dl<>	<dl< td=""><td>4.5</td><td>Final Molecular</td><td></td></dl<>	4.5	Final Molecular			
6	Mole Sieve Reject	7.4 ± 1	<dl< td=""><td><dl< td=""><td>3.8</td><td>15. Broduct Sievroe</td><td>Vell</td></dl<></td></dl<>	<dl< td=""><td>3.8</td><td>15. Broduct Sievroe</td><td>Vell</td></dl<>	3.8	15. Broduct Sievroe	Vell		
7	Column Bottoms	6.9 ± 1	4.6 ± 0.2	90 ± 3	3.4				
9,10,11	Thin Stillage	7.1 ± 0.1	4.8 ± 0.1	45 ± 6	3.4	Scrubber 7. Bottoms			
12	Corn Oil/Syrup	9.8 ± 0	8.4 ± 0.1	89 ± 9	3.3		e• Splitter		
13	Evaporated Water	0.037 ± 0	<dl< td=""><td><dl< td=""><td>3.4</td><td></td><td>11. Thin Stillage</td></dl<></td></dl<>	<dl< td=""><td>3.4</td><td></td><td>11. Thin Stillage</td></dl<>	3.4		11. Thin Stillage		
15	Well Water	0.18 ± 0.03	<dl< td=""><td>0.032 ± 0.001</td><td>6.7</td><td></td><td></td></dl<>	0.032 ± 0.001	6.7				
17	CO ₂ Scrubber Water	0.20 ± 0.04	<dl< td=""><td><dl< td=""><td>5.8</td><td></td><td>-Evaporator</td></dl<></td></dl<>	<dl< td=""><td>5.8</td><td></td><td>-Evaporator</td></dl<>	5.8		-Evaporator		
18	Recycled Cook Water	0.039 ± 0	<dl< td=""><td>0.027 ± 0.001</td><td>5.1</td><td></td><td></td></dl<>	0.027 ± 0.001	5.1				
*	Reboiler Condensate	$0.0037 \pm 9e-4$	<dl< td=""><td>ND</td><td>5.9</td><td>12</td><td>. Corn Oil/Syrup</td></dl<>	ND	5.9	12	. Corn Oil/Syrup		
*	Cooling Tower Blow Down	$0.0012 \pm 5e-4$	0.0081 ± 0	0.056 ± 0.004	8.3		¥		
*	Cooling Tower Blow Down + RO Reject	0.027 ± 0	0.0039 ± 0	0.033 ± 0.002	7.7				
<dl -<="" td=""><td>- Under Detection Lim</td><td>11. DL 15 as 1</td><td>ollows: 1</td><td>P = 0.5 mg/</td><td>L,</td><td></td><td></td></dl>	- Under Detection Lim	11. DL 15 as 1	ollows: 1	P = 0.5 mg/	L,				
TN = 1.0 mg/L, TSS = 1.0 mg/L									

ENVIRONMENTAL IMPACT

• HAPs

- HAPS are generated primarily in the Fermentation process
- Additional separation won't lead to additional HAPS
- WATER
 - Purification techniques don't often use water
 - Additional purification won't lead to additional water usage
- CO₂ / Green House Gasses
 - OFTEN SECONDARY DISTILLATION IS USED FOR FURTHER PURIFICATION
 - Secondary distillation often increases CO_2 by 5% to 10%, but possibly up to 100%
- CO₂ produced for hand sanitizer
 - TRAVEL SIZE (30ML) BOTTLE OF 70% ETHANOL REQUIRES 0.02 LBS OF CO₂

SOURCES 1

- BAEYENS, JAN, ET AL. "CHALLENGES AND OPPORTUNITIES IN IMPROVING THE PRODUCTION OF BIO-ETHANOL." PROGRESS IN ENERGY AND COMBUSTION SCIENCE, VOL. 47, Apr. 2015, pp. 60–88.
- BAIRD, R., ET AL. "STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER." AMERICAN PUBLIC HEALTH ASSOCIATION, 2017.
- BATISTA, FABIO R. M., MEIRELLES, A. J. A. "A STRATEGY FOR CONTROLLING ACETALDEHYDE CONTENT IN AN INDUSTRIAL PLANT OF BIOETHANOL." IFAC PROCEEDINGS VOLUMES, VOL. 42, NO. 11, 2009, PP. 928–33.
- BATRES-MARQUEZ, S. PATRICIA. "ETHANOL LEADS CREDIT GENERATION FOR CALIFORNIA LOW CARBON FUEL STANDARD | AGRICULTURAL MARKETING RESOURCE CENTER."<<u>https://www.agmrc.org/renewable-</u>energy/renewable-energy-climate-change-report/renewable-energy-climate-change-report/june-2017-re port/ethanol-leads-credit-generation-for-california-low-carbon-fuel-standard>.
- BLOOMFIELD, SALLY F., ET AL. "THE EFFECTIVENESS OF HAND HYGIENE PROCEDURES IN REDUCING THE RISKS OF INFECTIONS IN HOME AND COMMUNITY SETTINGS INCLUDING HANDWASHING AND ALCOHOL-BASED HAND SANITIZERS." *American Journal of Infection Control*, vol. 35, no. 10, Dec. 2007, pp. S27–64.
- BRADY, D.; PRATT, G.C. "VOLATILE ORGANIC COMPOUND EMISSIONS FROM DRY MILL FUEL ETHANOL PRODUCTION." JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION. 2007, 57(9), 1091-1102.
- BRYAN, T. "GREEN MACHINES." *Ethanol Producer Magazine*, July 01, 2003. < http://www.ethanolproducer.com/articles/1295/green-machines>.
- CALIFORNIA AIR RESOURCES BOARD. "Low Carbon Fuel Standard." <<u>https://ww2.arb.ca.gov/our-work/programs/low-carbon-fuel-standard/about.</u> <u>Accessed 23 Sept. 2020</u>>.
- CALIFORNIA AIR RESOURCES BOARD (2017A). "2016 LCFS COMPLIANCE INFORMATION AND CREDIT CLEARANCE MARKET INFORMATION." MONTHLY LCFS CREDIT TRANSFER ACTIVITY REPORTS
- DUERSCHNER, CHRIS, ET AL. "BIOFILTRATION OF ACETALDEHYDE RESULTING FROM ETHANOL MANUFACTURING FACILITIES." CHEMOSPHERE, VOL. 241, FEB. 2020, P. 124982.
- ETHANOL PRODUCER MAGAZINE. (2020). "THE LATEST NEWS AND DATA ABOUT ETHANOL PRODUCTION." http://ethanolproducer.com/plants/listplants/US/Operational/All/.
- EPA, "HAZARDOUS AIR POLLUTANTS." US ENVIRONMENTAL PROTECTION AGENCY, 2018. < https://www.epa.gov/haps>

SOURCES 2

• FDA. "TEMPORARY POLICY FOR MANUFACTURE OF ALCOHOL FOR INCORPORATION INTO ALCOHOL BASED HAND SANITIZER PRODUCTS DURING THE PUBLIC HEALTH EMERGENCY (COVID-19)" (2020). <

HTTPS://WWW.FDA.GOV/REGULATORY-INFORMATION/SEARCH-FDA-GUIDANCE-DOCUMENTS/TEMPORARY-POLICY-MANUFACTURE-ALCOHOL-INCORPORATION-ALCOHOL-BASED-HAND-SANITIZER-PRODUCTS-DURING

- GOJO US. "PURELL HAND SANITIZER INGREDIENTS." 2021. < https://www.gojo.com/en/Product-Catalog/Hand-Sanitizer/Ingredient-Transparency.>
- GOODWIN, JAZMIN. "GAS PRICES ARE FALLING ACROSS THE US, BUT CONSUMERS MAY NOT SEE THE BENEFIT. HERE'S WHY." USA TODAY, 21 MAR. 2020,
- HABE, H. (2013). "CHEMICAL ANALYSIS OF IMPURITIES IN DIVERSE BIOETHANOL SAMPLES." JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 56(6), 414–22.
- Kelly, Stephanie. "As U.S. Fuel Demand Dries up, More Ethanol Producers Turn to Hand Sanitizer." Reuters, 20 Apr. 2020. www.reuters.com, <<u>https://www.reuters.com/article/us-</u>usa-biofuels-sanitizer-idUSKBN22231G.>
- KWIATKOWSKI, J. R., (2006). "MODELING THE PROCESS AND COSTS OF FUEL ETHANOL PRODUCTION BY THE CORN DRY-GRIND PROCESS." INDUSTRIAL CROPS AND PRODUCTS, 23(3), 288–96.
- ONUKI, SHINNOSUKE, ET AL. "ETHANOL PURIFICATION WITH OZONATION, ACTIVATED CARBON ADSORPTION, AND GAS STRIPPING." SEPARATION AND PURIFICATION TECHNOLOGY, VOL. 151, SEPT. 2015, pp. 165–71.
- Perkins, J. (2013) "Ethanol Industry's Founding Fathers Look for Buyers Again."<<u>https://www.agriculture.com/news/business/ethanol-industrys-</u>founding-fathers-look-for-buyers-again>.
- SUMMERS, DANIEL R. "RECTIFIER DESIGN FOR FUEL ETHANOL PLANTS." AICHE ANNUAL MEETING, NOV. 2006, p. 7.
- TGARGUIFA, AHMED, ET AL. "ENERGY EFFICIENCY IMPROVEMENT OF A BIOETHANOL DISTILLERY, BY REPLACING A RECTIFYING COLUMN WITH A PERVAPORATION UNIT." RENEWABLE ENERGY, VOL. 122, JULY 2018, pp. 239–50.
- TULADHAR, E., ET AL. "REDUCING VIRAL CONTAMINATION FROM FINGER PADS: HANDWASHING IS MORE EFFECTIVE THAN ALCOHOL-BASED HAND DISINFECTANTS." JOURNAL OF HOSPITAL INFECTION, VOL. 90, NO. 3, JULY 2015, PP. 226–34.
- Voegele, Erin. Ethanol Plants Continue to Help Produce Hand Sanitizer. 8 Apr. 2020, <u>http://ethanolproducer.com/articles/17066/ethanol-plants-continue-to-help-produce-hand-sanitizer</u>.
- WORLD HEALTH ORGANIZATION. "WHO GUIDELINES ON HAND HYGIENE IN HEALTH CARE." WHO PRESS. 2009.