AEM Accepted Manuscript Posted Online 12 March 2021 Appl Environ Microbiol doi:10.1128/AEM.03105-20 Copyright © 2021 American Society for Microbiology. All Rights Reserved.

## 1 Antifungal polycyclic tetramate macrolactam HSAF is a novel oxidative stress

- 2 modulator in Lysobacter enzymogenes
- 3
- 4 Running title: HSAF as a novel oxidative stress modulator
- 5
- 6 Lingjun Yu,<sup>1,2</sup> Hui Li,<sup>2,3</sup> Zaichun Zhou,<sup>2,4</sup> Fengquan Liu<sup>1\*</sup> and Liangcheng Du<sup>2\*</sup>
- 7
- <sup>8</sup> <sup>1</sup>Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014,
- 9 China
- <sup>2</sup> Departments of Chemistry, University of Nebraska-Lincoln, NE 68588, USA
- <sup>3</sup> Nebraska Center for Materials and Nanoscience and Center for Integrated Biomolecular

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

- 12 Communication, University of Nebraska-Lincoln, NE 68588, USA
- <sup>4</sup> Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of
- 14 Education; School of Chemistry and Chemical Engineering, Hunan University of Science and
- 15 Technology, Xiangtan 411201, China
- 16
- 17 \*For corresponding: Liangcheng Du, Departments of Chemistry, University of
- 18 Nebraska-Lincoln, NE 68588, USA. E-mail: <u>ldu3@unl.edu</u>, Phone: 1-402-472-2998.
- 19 Fengquan Liu, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences,
- 20 Nanjing, 210014, China. E-mail: fqliu20011@sina.com.
- 21
- 22

Microbiology

### 23 ABSTRACT

24

Polycyclic tetramate macrolactams (PoTeM) are a fast-growing family of antibiotic natural 25 products found in phylogenetically diverse microorganisms. Surprisingly, none of the PoTeM 26 27 had been investigated for potential physiological functions in their producers. Here, we used HSAF (heat-stable antifungal factor), an antifungal PoTeM from Lysobacter enzymogenes, as 28 a model to show that PoTeM forms complexes with iron ion, with a  $K_a$  of 2.71\*10<sup>6</sup>. The in 29 vivo and in vitro data showed formation of 2:1 and 3:1 complexes between HSAF and iron 30 ions, which were confirmed by molecular mechanical and quantum mechanical calculations. 31 HSAF protected DNA from degradation in high concentrations of iron and H<sub>2</sub>O<sub>2</sub> or under UV 32 33 radiation. HSAF mutants of L. enzymogenes barely survived under oxidative stresses and markedly increased the production of reactive oxygen species (ROS). Exogenous addition of 34 HSAF into the mutants significantly prevented ROS production and rescued the mutants to 35 normal growth under the oxidative stresses. The results reveal that the function of HSAF is to 36 protect the producer microorganism from oxidative damages, rather than as an 37 iron-acquisition 38 siderophore. The characteristic structure of PoTeM, 2,4-pyrrolidinedione-embedded macrolactam, may represent a new iron-chelating scaffold of 39 40 microbial metabolites. Together, the study demonstrated a previously unrecognized strategy for microorganisms to modulate oxidative damages to the cells. 41

42

43

Accepted Manuscript Posted Online

Applied and Environmental Microbiology

| 4 | 5 | Polycyclic tetramate macrolactams (PoTeM) are a family of structurally distinct metabolites                |
|---|---|------------------------------------------------------------------------------------------------------------|
| 4 | 6 | that have been found in a large number of bacteria. Although PoTeM exhibit diverse                         |
| 4 | 7 | therapeutic properties, the physiological function of PoTeM in the producer microorganisms                 |
| 4 | 8 | had not been investigated. HSAF from Lysobacter enzymogenes is an antifungal PoTeM that                    |
| 4 | 9 | has been subjected to extensive studies for mechanism of biosynthesis, regulation and the                  |
| 5 | 0 | antifungal activity. Using HSAF as a model system, we here showed that the characteristic                  |
| 5 | 1 | structure of PoTeM, 2,4-pyrrolidinedione-embedded macrolactam, may represent a new                         |
| 5 | 2 | iron-chelating scaffold of microbial metabolites. In L. enzymogenes, HSAF functions as a                   |
| 5 | 3 | small molecule modulator for oxidative damages caused by iron, H <sub>2</sub> O <sub>2</sub> and UV light. |
| 5 | 4 | Together, the study demonstrated a previously unrecognized strategy for microorganisms to                  |
| 5 | 5 | modulate oxidative damages to the cells. HSAF represents the first member of the fast                      |
| 5 | 6 | growing PoTeM family of microbial metabolites whose potential biological function has been                 |
| 5 | 7 | studied.                                                                                                   |
| 5 | 8 |                                                                                                            |
| 5 | 9 | Key Words: natural products, polycyclic tetramate macrolactams, Lysobacter enzymogenes,                    |
| 6 | 0 | oxidative damage, iron binding                                                                             |
| 6 | 1 |                                                                                                            |

Microbiology

#### 63 Introduction

64

Polycyclic tetramate macrolactams (PoTeM) are a family of natural products with diverse 65 therapeutic properties, including antibacterial, antifungal, anti-protozoa, and anticancer (1-9). 66 Their structures share a characteristic 2,4-pyrrolidinedione (tetramate)-containing 67 macrolactam and have been found in phylogenetically diverse bacteria. For example, 68 ikarugamycin, frontalamides, clifednamides, pactamides, capsimycins, and carbamides were 69 isolated from various species of Streptomyces (1, 3-5, 8-10). HSAF and several alteramides 70 were reported from several Lysobacter strains (2, 11-15). Maltophilin and xanthobaccin were 71 72 isolated from Stenotrophomonas strains (16, 17). Discodermide and cylindramide were from 73 marine sponges (18, 19). Umezawamides were from a combined-culture of Umezawaea sp. 74 and mycolic-acid containing bacterium *Tsukamurella pulmonis* (20).

The biosynthetic gene cluster (BGC) for several PoTeM have been reported (2, 3, 5, 75 10-14). Although the chemical structures are complex, the BGC exhibits a relative simplicity 76 and a conserved organization. In the center of the BGC is always a single-module PKS-NRPS 77 hybrid gene, which is sufficient to construct the scaffold of PoTeM (10-12, 14, 21-23). 78 Flanking the PKS-NRPS gene are 2-6 accessory genes, which are responsible for the 79 80 structural diversity of PoTeM (14). Cryptic BGCs with this unique organization are present in numerous genome sequences in the databases, implying that there is an immense reservoir of 81 PoTeM type of natural products yet to be discovered from the vast number of microorganisms 82 (3, 9, 10). The therapeutic properties, structural novelty, diverse bioactivities, and distinct 83 biosynthetic mechanism have attracted a lot of research interests in the recent years. However, 84

Microbioloav

essentially nothing is known about PoTeM's physiological functions in their producer 85 organisms. 86 87 88

Many antibiotic metabolites are produced by microorganisms inhabiting in diverse environments. In their native environments, the metabolites are typically not to function as 89 antibiotics to kill or inhibit other microorganisms because the producers rarely produce 90 inhibitory concentrations of the metabolites in the environments (24). Many factors in the environments could affect the metabolite production and stress response in microorganisms. 91 For example, reactive oxygen species (ROS) are stimulated in microorganisms when growing 92 in a high iron environment or other stressed environments. Bacteria have evolved several 93 strategies to modulate the oxidative stress induced by a high ROS level. The thioredoxin (Trx) 94 95 system (NADPH, thioredoxin reductase and thioredoxin) is a crucial antioxidant system in bacteria. The system removes ROS through providing electrons to thiol-dependent 96 peroxidases. In most Gram-negative bacteria, glutaredoxin system (Grx) and catalase 97 provide a strong backup for the Trx system (25). Some catalase-negative bacteria such as 98 Streptococcus pyogenes mainly utilize the thiol-dependent peroxidase system in defense 99 100 against oxidative stress although both Trx and Grx exist (26). Besides, carotenoids and the aryl polyene type bacterial pigments are proved to protect bacteria from ROS, which is 101 related to their conjugation double bond systems (27-29). Recently, the H<sub>2</sub>S-mediated 102 mechanism was found in protection against oxidative stress in Escherichia coli (30). The 103 endogenous H<sub>2</sub>S produced by 3-mercaptopyruvate sulfurtransferase sequestrates free ion, 104 which is necessary for the genotoxic Fenton reaction (30). 105

106

In this study, we have used the small molecule metabolite, HSAF (heat-stable antifungal

Microbiology

factor), from L. enzymogenes, as a model PoTeM to explore its potential physiological 107 functions. HSAF and alteramides (Fig. 1) isolated from L. enzymogenes are arguably the most 108 109 extensively investigated PoTeM in terms of structural diversity, bioactivities and modes of 110 action, and molecular mechanisms for biosynthesis (2, 6, 7, 11-14, 31). Here, our results 111 showed that the characteristic structure of PoTeM, 2,4-pyrrolidinedione-embedded macrolactam, can act as a new iron-chelating natural product scaffold. HSAF functions as a 112 small molecule modulator for oxidative damages caused by iron,  $H_2O_2$  and UV light in L. 113 enzymogenes. Together, the study demonstrated a previously unrecognized strategy for 114 microorganisms to modulate oxidative damages to the cells. 115

116

#### 117 **RESULTS**

#### 118 Formation of brown-orange complexes between HSAF and iron

During the study of L. enzymogenes OH11, we serendipitously found that adding iron salts 119 into minimal culture media could make OH11 grow more robustly (Fig. S1a). When we 120 investigated the effect of different concentrations of FeSO<sub>4</sub> (0, 1, 10, 100 and 500  $\mu$ M) on the 121 122 growth of OH11 in a modified minimal medium (M813m) (Figure S1b), we observed formation of brown-orange substances in both the cultures and the HSAF extracts (Fig. 2a-b). 123 124 This color was intensified with the increase of the FeSO<sub>4</sub> concentration and was absent in the culture or extracts from HSAF mutant ( $\Delta$ HSAF) (32), even when grown in M813m 125 containing 500 µM FeSO<sub>4</sub>. The result suggested that HSAF and iron ions might be able to 126 interact with one another and form certain pigment complexes in the culture of OH11. 127 128 Moreover, we found FeSO<sub>4</sub> could significantly boost the production of HSAF and alteramides Applied and Environmental

Microbiology

To verify the HSAF-iron complexes, we extracted the total PoTeM mixture, containing 131 132 both HSAF and its analogs (alteramides), from the cultures. When the mixture was added into 133 an aqueous solution of FeSO<sub>4</sub>, the solution turned to the brown-orange color, with a gradually increased intensity following the increase of the PoTeM mixture, while the controls remained 134 colorless (Fig. 2c). Furthermore, the same color could be developed in the PoTeM mixture 135 when added with other iron salts, such as  $Fe(NH_4)_2(SO_4)_2$ ,  $FeCl_3$  and  $Fe(NO_3)_3$  (Fig. 2d). 136 HPLC analysis of the mixtures showed that the PoTeM peaks significantly decreased or 137 disappeared when any of the iron salts was added to the solutions (Fig. 2e). The interaction 138 139 between PoTeM and iron ions appeared to be specific, because HPLC showed that the PoTeM peaks remained in the solutions, if the mixture was added with other metal ions (Na<sup>+</sup>, Mg<sup>2+</sup>, 140  $K^+$ ,  $Ca^{2+}$ ,  $Zn^{2+}$ ), although there might have been some interactions between PoTeMs and  $Cu^{2+}$ 141 (Fig. S3). 142

143

#### 144 Mass spectrometry of HSAF-Fe complexes

The above observations indicated that HSAF and its analogs could form complexes with iron ions. To obtain direct evidence, we purified HSAF from the OH11 culture and treated HSAF (10 mM) with the same concentration of aqueous FeSO<sub>4</sub>, Fe(NH<sub>4</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, FeCl<sub>3</sub>, or Fe(NO<sub>3</sub>)<sub>3</sub>. The products were analyzed by mass spectrometry (MS). Without the iron ion, all MS gave two main peaks, m/z 513 for [HSAF+H]<sup>+</sup> and m/z 1025 for [2HSAF+H]<sup>+</sup>), which are expected for standard HSAF (Fig. 3). Upon treatment with the iron ion, the HSAF peaks

| 151 | markedly decreased (when added with ferrous ion, $FeSO_4$ or $Fe(NH_4)_2(SO_4)_2$ ) or disappeared                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 152 | (when added with ferric ion, FeCl <sub>3</sub> or Fe(NO <sub>3</sub> ) <sub>3</sub> ). Meantime, two new peaks appeared ( $m/z$     |
| 153 | 1079 and 1591) when treated with $FeSO_4$ or $Fe(NH_4)_2(SO_4)_2$ (Fig. 3a-b), or just one new peak                                 |
| 154 | appeared ( $m/z$ 1079) when treated with FeCl <sub>3</sub> or Fe(NO <sub>3</sub> ) <sub>3</sub> (Fig. 3c-d). The peak at $m/z$ 1079 |
| 155 | is coincident with $[2HSAF-H+Fe]^+$ , whereas the peak at $m/z$ 1591 is coincident with                                             |
| 156 | [3HSAF-H+Fe] <sup>+</sup> . The data showed that two or three HSAF molecules could coordinate with                                  |
| 157 | one iron ion, to form stable HSAF-Fe complexes that displayed the observed orange-brown                                             |
| 158 | color. The data also suggested that all HSAF chelated with Fe when a ferric salt was used, as                                       |
| 159 | seen in FeCl <sub>3</sub> and Fe(NO <sub>3</sub> ) <sub>3</sub> , but only a portion of HSAF chelated with iron when a ferrous      |
| 160 | salt was used, as seen in $FeSO_4$ and $Fe(NH_4)_2(SO_4)_2$ (Fig. 3). Since ferrous iron can gradually                              |
| 161 | be oxidized to ferric ion in the atmosphere, it is likely that the observed partial chelation in                                    |
| 162 | $FeSO_4$ and $Fe(NH_4)_2(SO_4)_2$ was due to the oxidized iron (ferric). Besides, both 2HSAF-Fe                                     |
| 163 | and 3HSAF-Fe were observed when ferrous salts were used, whereas only 2HSAF-Fe was                                                  |
| 164 | detected when ferric salts were used. This also supports that ferric ion is the preferred iron for                                  |
| 165 | HSAF chelation, because the concentration of ferric ion in solution would be lower when                                             |
| 166 | $FeSO_4$ and $Fe(NH_4)_2(SO_4)_2$ were used than that when $FeCl_3$ and $Fe(NO_3)_3$ were used, and thus                            |
| 167 | HSAF concentration was relatively high and two or three HSAF molecules were available to                                            |
| 168 | chelate one ferric ion in $FeSO_4$ and $Fe(NH_4)_2(SO_4)_2$ solutions. To further confirm the                                       |
| 169 | formation of HSAF-Fe complexes, EDTA, a strong chelator for metal ions, was added into                                              |
| 170 | the mixtures of HSAF and iron salts. MS clearly showed that the HSAF-Fe complexes ( $m/z$                                           |
| 171 | 1079 and 1591) were abolished and HSAF ( $m/z$ 513 and 1025) was restored (Fig. 3).                                                 |
| 172 |                                                                                                                                     |

#### 173 Absorbance spectra of HSAF-Fe complexes

Next, we analyzed the absorbance spectra of the HSAF-Fe complexes (Fig. S4). Standard 174 175 HSAF gave a maximum peak at ~323 nm, which shifted to ~310 nm upon addition of any of the iron salts,  $FeSO_4$ ,  $Fe(NH_4)_2(SO_4)_2$ ,  $FeCl_3$ , or  $Fe(NO_3)_3$ . While HSAF or the iron salts 176 177 barely had any absorption in the visible range, the HSAF-Fe complexes gave clear absorptions at  $\sim$ 410-600 nm, which apparently contributed to the orange-brown appearance 178 of the mixtures. Furthermore, the maximal absorption shifted back to 323 nm from 310 nm 179 and the absorption at ~410-600 nm disappeared, upon addition of EDTA (Fig. S4). The 180 absorption spectroscopic data are in accordance with that of MS analysis. Using the 181 182 UV-visible titration of HSAF with  $Fe(NO_3)_3$  and nonlinear curve-fitting at 470 nm, we obtained the association constant ( $K_a$ ) of HSAF-Fe to be 2.71\*10<sup>6</sup> (Fig. S5). The  $K_a$  value is 183 much smaller than that for recognized siderophores (33), indicating that, rather than function 184 as a siderophore for iron acquisition from the environment, HSAF in L. enzymogenes may 185 play a new function during the interaction with iron ion. 186

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

187

#### 188 Antioxidant activity of HSAF and protection of DNA degradation in vitro

To understand possible roles of HSAF in *L. enzymogenes*, we explored the potential involvement of HSAF in modulation of oxidative stress, because it is well known that the cellular iron could generate reactive oxygen species (ROS) due to the Fenton reaction, which can lead to cell death (34). The *in vivo* and *in vitro* data described above showed the formation of HSAF-Fe complexes, which might contribute to maintaining a proper free iron concentration important to redox homeostasis of the bacterial cells.

| 195 | To test this hypothesis, we used the deoxyribose degradation assay to determine HSAF's                                 |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 196 | antioxidant activity (35). HSAF showed a dose-dependent antioxidant activity and behaved as                            |
| 197 | a strong antioxidant when the concentration reached 80-160 $\mu M$ (Fig. 4a). The reaction                             |
| 198 | system for the assay contained deoxy-D-ribose, $H_2O_2$ , $Fe^{3+}$ , ascorbic acid, and purified HSAF                 |
| 199 | To exclude possible direct interactions between HSAF and $H_2O_2$ , ascorbic acid, or                                  |
| 200 | deoxy-D-ribose, we analyzed the mixtures using HPLC. As expected, HSAF was not affected                                |
| 201 | by any of the factors (H <sub>2</sub> O <sub>2</sub> , ascorbic acid, deoxy-D-ribose) (Fig. S6). The results indicated |
| 202 | that the antioxidant activity of HSAF resulted from the chelation with iron ion. To confirm                            |
| 203 | the antioxidant function of HSAF, we carried out in vitro DNA fragment degradation caused                              |
| 204 | by Fenton reaction due to production of the radical species (36). A DNA fragment with the                              |
| 205 | length of 1 Kb was amplified by PCR using the genome of L. enzymogenes as template. The                                |
| 206 | DNA fragment was completely degraded in the presence of $Fe^{3+}$ and $H_2O_2$ , while the DNA                         |
| 207 | fragment remained intact in the controls. However, the addition of purified HSAF inhibited                             |
| 208 | the DNA degradation, in a dose-dependent manner (Fig. 4b). When HSAF reached to 80 $\mu$ M,                            |
| 209 | the DNA fragment was fully protected from the Fenton reaction-caused degradation, which is                             |
| 210 | in good agreement with the antioxidative activity assay (Fig. 4a). To learn whether this                               |
| 211 | protective effect of HSAF is specific to certain DNA fragments, we tested similar length                               |
| 212 | DNA fragments from Lysobacter 3655, Lysobacter antibioticus OH13, and Escherichia coli.                                |
| 213 | HSAF exhibited the similar protective effect against the Fenton reaction-caused damage on                              |
| 214 | these DNA fragments, showing a general antioxidative effect of HSAF (Fig. S7).                                         |
| 215 |                                                                                                                        |

216 Protection of L. enzymogenes OH11 from high  $H_2O_2$  stress by HSAF in vivo

| >       |     |                                                                                                                                          |
|---------|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| -       | 217 | The observation that HSAF can protect in vitro DNA degradation by $H_2O_2$ inspired us to                                                |
| 5000    | 218 | investigate HSAF's function <i>in vivo</i> . The WT and $\Delta$ HSAF strains were treated with different                                |
|         | 219 | concentrations of $H_2O_2$ in M813m medium. The results clearly showed that the growth rate of                                           |
| 5       | 220 | the WT and $\Delta$ HSAF was similar when culture medium contained a low concentration of H <sub>2</sub> O <sub>2</sub>                  |
| 5       | 221 | (80 $\mu$ M), but in the medium containing a high concentration of H <sub>2</sub> O <sub>2</sub> (800 $\mu$ M), the growth               |
|         | 222 | rate of $\Delta$ HSAF strain significantly decreased when compared to that of the WT (Fig. 4c-4e).                                       |
|         | 223 | Actually, $\Delta$ HSAF strain did not grow in M813m containing 800 $\mu$ M H <sub>2</sub> O <sub>2</sub> in the first 48 h and          |
|         | 224 | started a slow growth only at 72 h, while the WT grown in M813m containing 800 $\mu M~H_2O_2$                                            |
|         | 225 | could reach the similar $OD_{600}$ values as the WT without $H_2O_2$ at 72-96 h. We also analyzed                                        |
|         | 226 | the HSAF level in cultures containing 0, 80 and 800 $\mu$ M H <sub>2</sub> O <sub>2</sub> . It showed that the production                |
| Яд      | 227 | of HSAF/alteramides in the WT with 800 $\mu M$ $H_2O_2$ decreased by 30% when compared to that                                           |
| crobiol | 228 | of the WT with 0 or 80 $\mu$ M H <sub>2</sub> O <sub>2</sub> , implying a consumption of HSAF for formation of                           |
| Ň       | 229 | HSAF-Fe complexes, to protect the cells grown in a high concentration of H <sub>2</sub> O <sub>2</sub> (Fig. S8). To                     |
|         | 230 | exclude the possibility that HSAF in WT could directly degrade $H_2O_2$ so that WT could grow                                            |
|         | 231 | in a high concentration of H <sub>2</sub> O <sub>2</sub> , we tested the ability of HSAF and HSAF-Fe complexes to                        |
|         | 232 | degrade H <sub>2</sub> O <sub>2</sub> in vitro (Fig. S9). The results show that H <sub>2</sub> O <sub>2</sub> was not degraded by either |
|         | 233 | HSAF or HSAF-Fe complexes. Furthermore, MS analysis of the ethyl acetate extract from                                                    |
| Ξ       |     |                                                                                                                                          |

234 the WT culture clearly detected the peaks at m/z 1079 for [2HSAF-H+Fe]<sup>+</sup> and 1591 for  $[3HSAF-H+Fe]^+$ , in addition to m/z 513 for  $[HSAF+H]^+$  (Fig. S10). This showed HSAF-Fe 235 complexes were formed in vivo. 236

237

Protection of L. enzymogenes OH11 from high iron stress in vivo 238

| 239 | Next, we looked into the effect of HSAF on the growth yield of L. enzymogenes OH11 under             |
|-----|------------------------------------------------------------------------------------------------------|
| 240 | different concentrations of iron ion. The WT and $\Delta$ HSAF strains in regular M813m medium       |
| 241 | containing 10 $\mu M$ iron ion exhibited a similar growth yield to that in M813m medium              |
| 242 | without iron ion (Fig. S11a-b). However, in M813m containing a high concentration (500 $\mu$ M)      |
| 243 | of iron ion, the growth yield of $\Delta$ HSAF strain was significantly lower than that of the WT    |
| 244 | after 72-120 h growth, although both strains exhibited a similar growth yield in the first 48 h      |
| 245 | (Fig. S11c). The addition of HSAF to the cultures after 48 h growth restored the growth yield        |
| 246 | of $\Delta$ HSAF strain to the WT level in the following 72-120 h growth, even when the iron         |
| 247 | concentration was as high as 500 $\mu M$ (Fig. S11d). The results show that HSAF can protect         |
| 248 | OH11 cells from high iron stress in vivo. Besides, the exogenously added HSAF-Fe                     |
| 249 | complexes, but not HSAF alone, could promote the growth of WT strain in M813m medium                 |
| 250 | without supplemented FeSO <sub>4</sub> (Fig. S12a). However, neither HSAF nor HSAF-Fe complexes      |
| 251 | affect the growth of WT strain in regular M813m medium containing FeSO <sub>4</sub> (Fig. S12b). The |
| 252 | results suggested that iron ion could be released from HSAF-Fe complexes and then up-taken           |
| 253 | by the cells to support the observed growth promotion.                                               |
|     |                                                                                                      |

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

254

#### 255 Protection of L. enzymogenes OH11 from UV radiation by HSAF

In light of HSAF's protection of *L. enzymogenes* from oxidative damages induced by high concentrations of iron and  $H_2O_2$ , we looked into the protective role of HSAF when the cells were exposed to UV radiation, because UV exposure can also lead to a variety of ROS through various mechanisms (37). When the WT and  $\Delta$ HSAF strains were exposed to the UV light for a short time (10 s), the survival rates of the WT and  $\Delta$ HSAF cells were similar.

However, the survival rate of  $\Delta$ HSAF cells was significantly decreased when the UV 261 exposure time increased to 30 s, and there was nearly zero colony on the plate with 60 s of 262 UV exposure, while the WT still had a large number of colonies (Fig. 5a, S13a). On the other 263 hand, the exogenous addition of purified HSAF to the  $\Delta$ HSAF culture before the UV 264 265 exposure could restore the growth. The rescue of the  $\Delta$ HSAF cells by HSAF showed a clear dose-dependent manner, and when the HSAF concentration reached 160 µM, the survival rate 266 of  $\Delta$ HSAF was even higher than that of the WT (Fig. 5b, S12b). The results unequivocally 267 showed the protective effect of HSAF on cells with UV radiation. 268

269

#### 270 Repression of ROS accumulation in L. enzymogenes OH11 by HSAF

271 Next, we tested the ROS formation in the strains using the method of H2DCFDA (2',7'-dichlorodihydrofluorescein diacetate), which is a cell-permeant indicator that generates 272 fluorescence after oxidation by ROS (38). The results showed almost no detectable ROS in 273 the WT and  $\Delta$ HSAF strains when cultured in the minimal medium without iron ion, and a low 274 level of ROS production similarly in the WT and  $\Delta$ HSAF strains in the modified medium 275 276 containing a low level of iron (M813m containing 10 µM FeSO<sub>4</sub>) (Fig. 5c). In a high iron medium (M813m containing 500 μM FeSO<sub>4</sub>), ΔHSAF strain produced nearly a double 277 278 amount of ROS than the WT, although the ROS level increased significantly in both the WT 279 and  $\Delta$ HSAF. Remarkably, when exogenous HSAF was added to the  $\Delta$ HSAF strain grown in the 500  $\mu$ M FeSO<sub>4</sub> medium, the ROS level returned to the WT level. The results clearly 280 showed that HSAF is able to repress the high iron-caused ROS production (Fig. 5c). 281 Moreover, the ROS level in  $\Delta$ HSAF was about 2 fold higher than that in the WT, when 282

Microbiology

Applied and Environ<u>mental</u>

Microbiology

Microbiology

treated with H<sub>2</sub>O<sub>2</sub> or UV lights, and the exogenous HSAF restored the WT level of ROS in 283  $\Delta$ HSAF strain (Fig. 5d-e). Next, we directly measured the ROS scavenging activity of HSAF 284 285 and HSAF-Fe complexes using DPPH (2,2-Diphenyl-1-picrylhydrazyl), which is a stable 286 radical and has the maximum absorption at 520 nm. The results showed that HSAF and 287 HSAF-Fe complexes exhibited low ROS scavenging activity when the incubation time was 0.5 h, while with the extension of incubation time (24 h, 72 h and 120 h), the ROS 288 scavenging activity of both HSAF and HSAF-Fe complexes increased (Fig. S14a-b). As 289 expected, ascorbic acid showed strong ROS scavenging activity (Fig. S14c). This is 290 consistent with the observation in the UV irradiation assay, where the cultural time was 72 h 291 and HSAF exhibited ROS scavenging activity. The data clearly showed the ROS modulating 292 293 ability of HSAF in L. enzymogenes.

294

#### 295 Molecular structure of HSAF-Fe complexes

To obtain further evidence for formation of the HSAF-Fe complexes, we performed 296 molecular mechanical and quantum mechanical calculations to determine the possible 297 298 molecular structures of the HSAF-Fe complexes. Using a molecular mechanical force field method, a global search suggested that both  $Fe^{3+}$  and  $Fe^{2+}$  ions can be chelated by 2 or 3 299 300 HSAF neutral molecules. Quantum mechanical method was used to refine the molecular geometries (Fig. 6). When 2 molecules of HSAF bind to an iron ion, the 3 carbonyl oxygen 301 atoms (at C7, C25, C27, see Fig. 1) of each of the two HSAF molecules form 3 coordinate 302 bonds to the iron. When 3 molecules of HSAF bind to an iron ion, two HSAF molecules 303 304 provide the oxygen atoms at C7 and C27, and the third HSAF molecule provides the oxygen

Microbiology

atoms at C25 and C27. Together, the three HSAF molecues form 6 coordinate bonds to the 305 iron. Due to steric factors, it would be impossible for 4 molecules of HSAF to bind to one 306 307 iron. The carbonyl oxygen atoms at C7, C25 and C27 are absolutely conserved in all PoTeMs, 308 suggesting that formation of such iron complexes are general for all PoTeMs. The chelation 309 status is similar to that of *Pseudomonas* quinolone signal (PQS) with iron ion, in which two or three PQS molecules chelated one iron ion (39). 310

311

#### DISCUSSION 312

Since the isolation of HSAF and its analogs from Lysobacter enzymogenes, the research has 313 314 focused on their antifungal activity, as well as the molecular mechanism for their biosynthesis 315 and regulation. The work presented here is the first attempt to address the role of these complex molecules in their producer organism. Lysobacter species are emerging as a rich 316 source of bioactive natural products. During our efforts to activate silent biosynthetic gene 317 clusters in the genomes of Lysobacter species, we serendipitously found that the addition of 318 iron salts enhanced HSAF production. Meantime, we observed the formation of a 319 320 brown-orange color when iron salts were added to the cultures that produced HSAF and analogs, but not in the biosynthetic mutant. In vitro studies using the crude extracts and 321 322 purified HSAF confirmed that the color was due to formation of complexes between these compounds and iron. The results also showed that the production of HSAF and analogs is 323 essential for L. enzymogenes to survive under oxidative conditions that are known to generate 324 reactive oxygen species (ROS). 325

326

When L. enzymogenes was exposed to a high concentration of iron, H<sub>2</sub>O<sub>2</sub>, or UV

Applied and Environmental

Microbiology

radiation, the HSAF biosynthetic mutant was barely able to survive, while the wild type and the mutant supplemented with HSAF exogenously could grow normally. In bacteria, ROS are induced by many stresses including presence of a high iron concentration,  $H_2O_2$  treatment, and UV radiation (40). Indeed, we observed a significantly higher level of ROS production in the HSAF mutant than in the wild type. The supplement of HSAF into the mutant reduced the ROS level to that of the wild type.

We also observed that HSAF protects DNA from degradation in the presence of iron and H<sub>2</sub>O<sub>2</sub>, probably due to hydroxyl radical ( $^{\circ}$ OH), generated by Fenton reaction [Eq. (1)]. Hydroxyl radical is highly reactive ROS and able to oxidize practically every molecule in the cell (41, 42).

)

337 
$$H_2O_2 + Fe^{2+} \rightarrow OH + OH + Fe^{3+}$$
 (1)

In both prokaryotes and eukaryotes, the oxidative DNA damage caused by hydroxyl 338 radical is the primary cause of cell death under oxidative stress conditions (43-45). We thus 339 hypothesized that HSAF may be involved in Fenton reaction and affect the redox 340 homeostasis of L. enzymogenes. In bacteria, both  $O_2^{\bullet}$  and  $H_2O_2$  are primarily produced by 341 the accidental autoxidation of non-respiratory flavoproteins which are univalent electron 342 donors giving electrons to oxygen (46). Besides, a high iron concentration also could promote 343 344 the  $H_2O_2$  generation. In deoxyribose degradation assay, ascorbic acid initializes the Fenton reaction by reducing  $Fe^{3+}$  to  $Fe^{2+}$ , and  $Fe^{2+}$  in turn reacts with  $H_2O_2$  to generate ROS (•OH) 345 [Eq. (1)] (35). In the *in vitro* assay of DNA fragment degradation,  $Fe^{3+}$  could be reduced to 346  $Fe^{2+}$  through reacting with H<sub>2</sub>O<sub>2</sub>, by following the two-step reactions [Eq. (2)-(3)] (47). The 347 reactions generate  $Fe^{2+}$  and then ROS by the reaction between  $Fe^{2+}$  and  $H_2O_2$  as shown in Eq. 348

Applied and Environmental

Microbiology

350 
$$H_2O_2 + Fe^{3+} \rightarrow Fe-OOH^{2+} + H^+$$
 (2)

$$351 \qquad \text{Fe-OOH}^{2+} \longrightarrow \text{HO}_2 + \text{Fe}^{2+}$$

As shown in Fig. 2, HSAF prefers ferric ion over ferrous ion in the chelation. The 352 HSAF-Fe<sup>3+</sup> chelation would prevent the reduction of Fe<sup>3+</sup> to Fe<sup>2+</sup> in the two-step reactions 353 [Eq. (2)-(3)]. Consequently, the sequestration of Fe<sup>3+</sup> ion by HSAF would result in a reduced 354 amount of free  $Fe^{2+}$  in the cells and in turn a reduced ROS from the Fenton reaction. The  $K_a$ 355 value of HSAF-Fe complexes is significantly smaller than that of typical siderophores. This 356 suggests that a relatively high concentration (µM level) of HSAF would be needed in order to 357 form stable complexes with iron. HSAF and alteramides are the predominant secondary 358 359 metabolites in L. Enzymogenes (2). We were able to obtain up to 50 mg HSAF from 1 L culture, suggesting that the concentration of HSAF in the cells would be higher than 100  $\mu$ M. 360 Thus, the concentration at which HSAF exhibited iron-chelation and strong antioxidant 361 activity in vitro could be readily achievable in vivo. 362

(3)

Moreover, we showed that the exogenous addition of HSAF into the culture media could 363 restore the  $\Delta$ HSAF mutant's growth under high iron concentrations, H<sub>2</sub>O<sub>2</sub>, and UV radiation; 364 we also showed that the exogenous HSAF was able to make the ROS level in the  $\Delta$ HSAF 365 366 mutant return to the WT level, even when grown in the 500  $\mu$ M FeSO<sub>4</sub> medium. Together, these observations implied that extracellular HSAF was able to enter the cells. However, the 367 exact mechanism of HSAF transportation is not totally clear at the moment. Beyond chelating 368 iron, HSAF can also scavenge ROS directly as seen in Fig. 5c-e and Fig. S14a-b. These 369 explain the protective effect of HSAF on Lysobacter with UV exposure (Fig. 5a-b). 370

Applied and Environmental Microbioloay Although HSAF is able to chelate iron, the HSAF-Fe complexes form only when the iron concentration is sufficiently high (above  $\mu$ M level). This is in contrast to siderophores whose primary function is to grab metal ions from the environments where the concentration of the metals can be extremely low. HSAF functions as a modulator for oxidative stresses only when the cells are exposed to an environment with a high concentration of iron, H<sub>2</sub>O<sub>2</sub>, or exposed to UV light, all of which can lead to ROS generation that damages DNA and cell survival.

Moreover, our study using methods in molecular mechanical force field and quantum 378 mechanical indicated that the carbonyl groups at C7, C25 and C27 of HSAF structure are 379 380 involved in formation of the HSAF-Fe complexes. These carbonyl groups are absolutely 381 conserved in all PoTeMs. This finding is significant becasue it suggests that formation of such iron complexes could be general for all PoTeMs. On the other hand, there is a clear 382 structural diversity among the PoTeM family, which is derived from the polycyclic system 383 (14). While HSAF and alteramides are known for antifungal activity, other members of the 384 PoTeM family exhibit antitumor, antiprotozoal, cytotoxic, and antiviral activities. The 385 386 structural diversity of PoTeMs may be associated with these activities and may also confer survival advantage to their producers in various habitats. For example, L. enzymogenes OH11 387 388 was originally isolated from the rhizosphere of a pepper plant (32). Whether HSAF and alteramides play a role in plant root colonization is worth a further investigation, as resistance 389 to oxidative stress is important for the survival of bacteria during their interaction with plants. 390 It is not very clear what structural features in these compounds are associated with the 391 antifungal activity, although we found the carbonyl oxygen atoms at C7, C25 and C27 are 392

| 393 | involved in the iron chelation to form HSAF-Fe complexes. L. enzymogenes can produce             |
|-----|--------------------------------------------------------------------------------------------------|
| 394 | HSAF and analogs without iron and with iron in the minimal media (up to 500 $\mu$ M). In reality |
| 395 | it is unlikely that the iron concentration in the natural environment of L. enzymogenes would    |
| 396 | be higher than what we have tested. Several iron chelators have exhibited antifungal activity,   |
| 397 | such as siderophores produced by Azospirillum brasilense could inhibit the growth of             |
| 398 | Colletotrichum acutatum and the siderophore oxachelin from Streptomyces sp. GW9/1258             |
| 399 | showed strong antimicrobial activity against several fungi and Gram-positive bacteria (48,       |
| 400 | 49). Further studies are needed in order to answer whether the antifungal activity and the       |
| 401 | antioxidant activity are related to each other or exclude each other. Nevertheless, it seems     |
| 402 | reasonable to assume that the antioxidant activity of HSAF and analogs could enhance the         |
| 403 | survival rate of the producer microorganism through the enhanced resistance to oxidative         |
| 404 | stress and thus play a role in plant root colonization during their interaction with plants.     |
| 405 | Several strategies are evolved in bacteria to modulate the oxidative stress (25-30).             |
|     |                                                                                                  |

In summary, HSAF has been recognized as an antifungal antibiotic with a fascinating 406 chemical structure, new mode of action, and distinct mechanism for biosynthesis (2, 6, 7, 31). 407 Here, we presented evidence to support that HSAF and its analogous compounds may 408 represent a new strategy for microorganisms to modulate the oxidative stress. These 409 410 "secondary metabolites" confer L. enzymogenes to survive in the environment with a high 411 concentration of iron, H<sub>2</sub>O<sub>2</sub> or UV radiation. HSAF is the first member of the fast growing PoTeM family of natural products whose potential biological function has been investigated. 412 The genome mining efforts have shown a strikingly conserved organization for PoTeM 413 biosynthetic clusters, which are present in a large number of unexplored genomes of 414

phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes (3, 10, 14). 415 416 This means there are a large number of new PoTeMs yet to be explored. The understanding the biological function of HSAF shed new lights into the critical role of "secondary 417 418 metabolites" in the survival of microorganisms in complex ecosystems, and the results will 419 also facilitate the future efforts in new PoTeM exploitation.

420

#### **MATERIAL AND METHODS** 421

422

436

#### Bacterial cultures, primers and PCR 423

424 The wild type strain Lysobacter enzymogenes OH11 (CGMCC No. 1978) and the HSAF biosynthetic mutant  $\Delta$ HSAF (Table 1) were cultured in Luria-Bertani (LB) medium (32). For 425 the production of HSAF and its analogs, the strains were cultured in M813 modified medium 426 (4 g Glucose, 3 g K<sub>2</sub>HPO<sub>4</sub>, 1.2 g NaH<sub>2</sub>PO<sub>4</sub>, 1 g NH<sub>4</sub>Cl, 0.3 g MgSO<sub>4</sub>, 0.15 g KCl, 10 mg 427 CaCl<sub>2</sub>, 2.8 mg FeSO<sub>4</sub>7H<sub>2</sub>O, per liter) (50). In the initial experiments, the strains were also 428 cultured in MM2 medium (4 g Glucose, 15 g KH<sub>2</sub>PO<sub>4</sub>, 34 g Na<sub>2</sub>HPO<sub>4</sub>, 5.4 g NH<sub>4</sub>Cl, 2.5 g 429 NaCl, 0.3 g MgSO<sub>4</sub>, 10 mg CaCl<sub>2</sub>, per liter). Table 2 listed the primers used in this study. 430 Phusion High-Fidelity DNA polymerase (Thermo Scientific) was used as the amplification 431 432 enzyme. The PCR started from an initial denaturation at 98°C for 30 s followed by 30 cycles of amplification (98°C for 10 s, 60°C for 15 s, 72°C for 1 min), and completed with 433 additional 5 min at 72°C. Depending on the DNA templates and primers, the annealing 434 temperature and the elongation time were adjusted in some case 435

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

Applied and Environ<u>mental</u>

Microbioloav

#### 437 Extraction and HPLC analysis of HSAF and its analogs

L. enzymogenes OH11 wild type (WT) and HSAF deficiency strain ( $\Delta$ HSAF), in which a part 438 439 of *pks-nrps* gene (from +232 bp to +1356 bp with relative to the start codon) of HSAF 440 biosynthetic gene cluster was deleted (32), were incubated into 1 ml LB at 30°C with shaking 441 of 200 rpm for overnight. An aliquot (1%) of the cultures was transferred to 25 ml M813 modified (M813m) medium with variable concentrations of  $FeSO_4$  (final concentration of 0, 442 1, 10, 100 and 500 µM), 30°C with shaking at 200 rpm for 48 h. The whole cultures (cells 443 and medium) were treated with 75 µl TFA and 25 ml ethyl acetate. The organic phase was 444 dried with the air flow, and the residues were re-dissolved in 200  $\mu$ l methanol. A 2  $\mu$ l aliquot 445 446 of each extract was analyzed by HPLC (Agilent, 1220 Infinity LC). Water/0.05% FA (solvent 447 A) and acetonitrile/0.05% FA (solvent B) were used as the mobile phases with a flow rate of 1.0 ml/min. The HPLC program was as follows: 5–25% B in 0–5 min, 25%-80% B in 5–25 448 min, 80-100% B in 25-26 min, maintained to 28 min, back to 5% B at 29 min and 449 maintained to 30 min. HSAF and its analogs were detected at 318 nm on a UV detector. For 450 purification of HSAF, WT was incubated into 10 ml LB at 30°C with shaking at 200 rpm for 451 452 overnight. An aliquot (1%) of the cell cultures was transferred to 1 L M813m medium and grew at 30°C with shaking at 200 rpm for 48 h. The culture broth was adjusted to pH 2.5 with 37% 453 454 HCl. The culture was added with the same volume of ethyl acetate, and HSAF was extracted into the organic phase for three times. The ethyl acetate phase was dried using a rotavapor, and 455 HSAF was separated from other metabolites in the extract (850 mg) on a C18 reverse-phase 456 column, eluted with different concentrations of methanol (10%, 30%, 50%, 70%, and 100%). 457 458 The fraction (552 mg) of 100% methanol was used to purify HSAF (~50 mg) by HPLC.

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

Applied and Environmental Microbiology

AEM

459

#### 460 *Chelation of HSAF with metal ions*

461 For the chelation with  $FeSO_4$ , an increased volume (1, 10, 50 µl, in methanol) of the total 462 PoTeM mixture (2 mg/ml) was mixed with 100  $\mu$ l aqueous solution of FeSO<sub>4</sub> (10 mM). For 463 the chelation with other iron salts, the total PoTeM mixture (50  $\mu$ l, 2 mg/ml) was incubated with 50  $\mu$ l aqueous solution of Fe(NH<sub>4</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>, FeCl<sub>3</sub>, and Fe(NO<sub>3</sub>)<sub>3</sub> (each 10 mM). For the 464 chelation with other metals, the total PoTeM mixture (50 µl, 0.5 mg/ml) was incubated with 465 50 µl aqueous solution of Na<sub>2</sub>SO<sub>4</sub>, MgSO<sub>4</sub>, K<sub>2</sub>SO<sub>4</sub>, Ca(NO<sub>3</sub>)<sub>2</sub>, CuSO<sub>4</sub>, and ZnSO<sub>4</sub> (each 10 466 mM). Methanol was used as control. For HPLC analysis, the above mixed solutions were 467 468 dried and then resuspended in 100 µl methanol. A 20 µl aliquot of each of the solutions was 469 analyzed by HPLC (Agilent, 1220 Infinity LC). The HPLC program was as follows: 470 Water/0.05% FA (solvent A) and acetonitrile/0.05% FA (solvent B) were used as the mobile phases with a flow rate of 1.0 ml/min. The program was as follows: 5%-60% B in 0-5 min, 471 60%-100% B in 5–20 min, maintained to 23 min, back to 5% B at 28 min, and maintained to 472 30 min. The metabolites were detected at 230 nm on a UV detector. The experiments were 473 474 repeated for three times.

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

475

### 476 MS analysis and UV-Visible absorbance spectra of the HSAF-Fe complexes

To prepare the complexes, purified HSAF (20  $\mu$ l,10 mM) was mixed with an equal volume of each of aqueous FeSO<sub>4</sub> (10 mM), Fe(NH<sub>4</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> (10 mM), FeCl<sub>3</sub> (10 mM), and Fe(NO<sub>3</sub>)<sub>3</sub> (10 mM). Each of the mixtures was dried and re-suspended in 200  $\mu$ l ddH<sub>2</sub>O. Ethyl acetate (200  $\mu$ l, containing 0.05% TFA) was added to the suspension to extract the HSAF-Fe

Microbioloav

complexes, and the organic phase was collected and dried and re-dissolved in 1 ml methanol. 481 A 20 µl aliquot of each of the samples was analyzed by MS and the remaining fraction of the 482 483 samples was used to determine the UV-visible absorbance spectrum by a spectrophotometer (Shimadzu UV-Vis 2501). After the spectra were taken, 50 µl Na<sub>2</sub>EDTA (100 mM, pH 8.0) 484 485 was added into each of the samples, and the samples were dried and re-suspended in 250 µl ddH2O. Similar to the above procedure, the HSAF-Fe complexes were extracted with 250 µl 486 ethyl acetate (containing 0.05% TFA), the organic phase was collected and dried and 487 re-dissolved in 1 ml methanol. Then samples then were similarly analyzed by MS and 488 spectrophotometer again. The experiments were repeated for three times. 489

490

#### 491 *UV-Visible absorbance titration and association constant determination*

To determine the association constant, absorbance spectra were recorded with a spectrophotometer (Shimadzu UV-Vis 2501). The UV-Visible titration assay was performed by using a constant host concentration of HSAF (0.1 mM) and variable concentrations of Fe(NO<sub>3</sub>)<sub>3</sub> at 25°C. Association constant ( $K_a$ ) was calcualted using Eq. (4) by applying a nonlinear curve-fitting method (51) on Program of origin 9.0 to changes in absorbance ( $\Delta$ Abs) at 470 nm.

498 
$$\Delta Abs = (L(1+K_aX+K_aA) - (L^2(K_aX+K_aA+1)^2 - 4K_a^2AXL^2)^{0.5})/2K_aA (4)$$

499 Where X and A were the total concentration of the guest and the host, respectively, and *L* 

and  $K_a$  were treated as parameters. The experiments were repeated for three times.

501

502 *Assay for deoxyribose degradation* 

Microbiology

503

504

505

506

507

508

509

510

511

512

513

514

515

516

| which was determined photometrically at 532 nm (34). To perform the assay, 227.5 $\mu$ l                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| variable concentration of purified HSAF (final concentration is 0, 5, 10, 20, 40, 80, and 160                                                          |
| $\mu$ M) were added into the reactant mixture containing 45.5 $\mu$ l Deoxy-D-ribose (52 mM, in 50                                                     |
| mM KH <sub>2</sub> PO <sub>4</sub> , pH 7.4), 91 µl FeCl <sub>3</sub> (4 µM, in water), 91 µl KH <sub>2</sub> PO <sub>4</sub> buffer (pH 7.4), 45.5 µl |
| $H_2O_2$ (10 mM, in water), and 45.5 µl ascorbic acid (1 mM, in 50 mM KH <sub>2</sub> PO <sub>4</sub> , pH 7.4). The                                   |
| samples were mixed and incubated at 30°C for 60 min. After that, 455 µl 2-thiobarbituric acid                                                          |
| (1%, in 3% trichloroacetic acid) was added into each of the samples, and the mixtures were                                                             |
| incubated at 85°C for 30 min. The supernatant of each of the mixtures was collected                                                                    |
| following centrifugation (12,000 rpm, 1 min), and the $OD_{532}$ value of the supernatants was                                                         |
| determined by spectrophotometer (Shimadzu UV-Vis 2501). The experiments were repeated                                                                  |
| for three times.                                                                                                                                       |
|                                                                                                                                                        |

This assay was used to determine the antioxidative activity. In the assay, hydroxyl radicals

generated by the Fenton reaction would degrade deoxy-D-ribose into malonyldialdehyde

(MDA) (35). MDA then would react with 2-thiobarbituric acid to produce a pink pigment,

517

#### 518 Assay for in vitro DNA degradation

The assay followed a previously described method with some modifications (36). The DNA 519 520 fragments were obtained by PCR using primers listed in Table S2 with a template from the genomic DNA of L. enzymogenes OH11, Lysobacter 3655, L. antibioticus OH13, or E. coli. 521 Each of the degradation mixtures contained 100 ng DNA fragment, 20 mM  $H_2O_2$ , 150  $\mu$ M 522 FeCl<sub>3</sub> and various concentrations of purified HSAF (0.3125, 0.625, 1.25, 2.5, 5, 10, 20, 40 523 and 80 µM) in 50 mM KH<sub>2</sub>PO<sub>4</sub> buffer (pH 7.4). After incubating the mixtures at 37°C for 60 524

Microbioloav

min, the samples were applied to 0.8 % agarose gels in TAE buffer. The electrophoresis was 525 performed at 140 V for 15 min, and the bands were visualized in a UV transilluminator 526 527 (Universal Hood, Bio-Rad). The experiments were repeated for three times.

528

529 OH11 growth under oxidative stress induced by  $H_2O_2$ 

530 WT and  $\Delta$ HSAF strains were incubated into 1 ml LB at 30°C with shaking of 200 rpm for overnight. A fraction (1%) of the cultures was transferred to 25 ml M813m medium at 30°C 531 with shaking at 200 rpm for 48 h. After the  $OD_{600}$  value of each of the cultures was 532 determined, a fraction (1%) of the cultures was added into 25 ml M813m medium containing 533 534 0, 80, or 800  $\mu$ M H<sub>2</sub>O<sub>2</sub>, and the cultures were incubated at 30°C with shaking at 200 rpm for 535 96 h. The  $OD_{600}$  values of WT and  $\Delta HSAF$  strains were recorded every 24 h. The experiments were repeated for three times. 536

537

#### Assay for in vitro $H_2O_2$ degradation 538

The Hydrogen Peroxide (H<sub>2</sub>O<sub>2</sub>) Colorimetric Assay Kit (Elabscience, China) was used to 539 540 detect the concentration of H<sub>2</sub>O<sub>2</sub> which could react with ammonium molybdate and produced a yellow complex with the maximum absorption at 405 nm. The reaction system contained 2 541 542 ml reaction buffer, 100  $\mu$ l H<sub>2</sub>O<sub>2</sub> (60 mM), and 100  $\mu$ l purified HSAF (4 mM) or 100  $\mu$ l purified HSAF-Fe complexes (4 mM). Methanol was used as negative control. The reaction 543 system was incubated at  $30^{\circ}$ C for 30 min, then the OD<sub>405</sub> value was determined by 544 spectrophotometer. 545

546

For the WT and  $\Delta$ HSAF of *L. enzymogenes* OH11, the strains were incubated into 1 ml LB at 548 549 30°C with shaking at 200 rpm for overnight. A fraction (1%) of the cultures was transferred to 25 ml M813m medium at 30°C with shaking at 200 rpm for 48 h. The cultures were 550 551 adjusted with the medium to the same  $OD_{600}$  of 1.5 and a fraction of 10 ml of each of the cultures was spread on a petri dish (9.0 cm, external diameter) and exposed to a UV light 552 source (253.7 nm, Model TUV 30W T8, 102 Volts, 0.37 AMPS, 30 Watts), at a distance of 30 553 cm between the light and the cells for 0 s, 10 s, 30 s or 60 s. For the complementary assay, 554 purified HSAF with a various concentration (final concentration of 0, 20, 80 and 160  $\mu$ M) 555 was added into the culture of  $\Delta$ HSAF strain before exposure to UV for 60 s, and methanol 556 557 was used as control. The cultures were serially diluted and spread on fresh LB plates. The numbers of colonies on each plate were counted after 72 h of incubation at 30°C. The 558 experiments were repeated for three times. 559

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

560

#### 561 *ROS detection*

The production of ROS in WT and  $\Delta$ HSAF strains were detected using a previous method with some modifications (38). WT and  $\Delta$ HSAF strains were incubated into 1 ml LB, 30°C with shaking of 200 rpm for overnight. A fraction (1%) of the cultures was transferred into 25 ml M813m medium with various concentrations of FeSO<sub>4</sub> (0, 10, 500  $\mu$ M). After 72 h of growth, the cultures were diluted 30-fold with the same medium in a 96-well plate. Then H2DCFDA was added to the wells with a final concentration of 10  $\mu$ M. The incubation of the plate continued in the dark at 30°C with shaking at 60 rpm for 6 h. Fluorescence was measured in a BioTek Synergy H1 plate reader (excitation, 495 nm; emission, 527 nm). In addition, the cultures of WT and  $\Delta$ HSAF from regular M813m medium containing 10  $\mu$ M FeSO<sub>4</sub> were treated with UV for 60 s without or with purified HSAF (final concentration 160  $\mu$ M), or treated with H<sub>2</sub>O<sub>2</sub> (final concentration 40 mM) before fluorescence detection. The experiments were repeated for three times.

574

#### 575 Assay for ROS scavenging activity of HSAF and HSAF-Fe complexes

HSAF and HSAF-Fe complexes were tested for in vitro ROS scavenging activity using 576 DPPH (2,2-Diphenyl-1-picrylhydrazyl) which is a stable radical and has the maximum 577 578 absorption at 520 nm. In reaction system, 1 ml DPPH (5 mg/ml, dissolved in ethanol) was 579 mixed with 200 µl various concentration of purified HSAF or HSAF-Fe complexes (final 580 concentration was 0 µM, 20 µM, 40 µM, 80 µM and 160 µM, dissolved in ethanol), and then incubated at room temperature for 0.5 h, 24 h, 72 h and 120 h. The OD<sub>520</sub> value of samples 581 was determined by spectrophotometer, which was used to calculate the remaining DPPH, by 582 following the formula: DPPH (%) =  $A/A_0*100\%$ ,  $A_0$  represents the OD<sub>520</sub> value of 0  $\mu$ M. 583 584 Ascorbic acid was used as positive control and the  $OD_{520}$  value was determined immediately. 585

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

# 586 *Extraction of the HSAF-Fe complexes in vivo*

587 WT was incubated into 1 ml LB, 30°C with shaking at 200 rpm for overnight. A fraction (1%) 588 of the cultures was transferred into 50 ml M813m medium containing 500  $\mu$ M FeSO<sub>4</sub>, and 589 incubated at 30°C with shaking at 200 rpm for 48 h. After centrifugation (12,000 rpm, 5 min), 590 the precipitate presented as two layers, and the upper layer was collected and extracted with

Microbioloav

50 ml ethyl acetate (containing 0.3% TFA). The organic phase was dried and re-dissolved in
200 μl methanol. The methanol solutions were used for MS analysis. The experiments were
repeated three times.

### 595 Molecular mechanical and quantum mechanical calculations

The calculations were performed with the quantum chemistry polarizable force field 596 (QuanPol) (52) program and the General Atomic and Molecular Electronic Structure System 597 [GAMESS (53, 54)] package. The MMFF94 force field (55-58) was used in the global search 598 of the most stable molecular structures. In the global search, one million steps (time step size 599 600 = 1 fs) of molecular dynamic simulation were performed at 700 K, with a geometry 601 optimization at every 1000 steps. Using the MMFF94 identified minimum structures, quantum mechanical density functional theory method B3LYP (59, 60) [with Grimme's 602 empirical dispersion correction version III (61)] was used to refine the molecular geometries. 603 The 6-31G\* basis set (62) was used. 604

605

### 606 ACKNOWLEDGEMENTS

This work was supported in part by NSFC (31872018), University of Nebraska Collaboration Initiative Seed Grant, and the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research at the University of Nebraska-Lincoln. L.Y. was supported by a postdoctoral fellowship from Jiangsu Academy of Agricultural Sciences. The calculations were performed with resources at the University of Nebraska-Lincoln Holland Computing Center.

Applied and Environmental Microbiology

AEM

Applied and Environmental Microbiology

#### 613

- Conflict of Interest: the authors have no conflict of interest to declare. 614
- 615
- 616

Microbioloav

### 617 **REFERENCES**

618

Jomon K, Kuroda Y, Ajisaka M, Sakai H. 1972. A new antibiotic, ikarugamycin. J
 Antibiot (Tokyo) 25:271-280.

2. Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L.

622 2007. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum
623 antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64-72.

Blodgett JA, Oh DC, Cao S, Currie CR, Kolter R, Clardy J. 2010. Common biosynthetic
 origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc
 Natl Acad Sci U S A 107:11692-11697.

4. Qi Y, Ding E, Blodgett JAV. 2018. Native and engineered clifednamide biosynthesis in
multiple *Streptomyces* spp. ACS Synth Biol 7:357-362.

5. Saha S, Zhang W, Zhang G, Zhu Y, Chen Y, Liu W, Yuan C, Zhang Q, Zhang H, Zhang L,

630 Zhang W, Zhang C. 2017. Activation and characterization of a cryptic gene cluster reveals a

631 cyclization cascade for polycyclic tetramate macrolactams. Chem Sci 8:1607-1612.

- 6. Ding Y, Li Y, Li Z, Zhang J, Lu C, Wang H, Shen Y, Du L. 2016. Alteramide B is a
  microtubule antagonist of inhibiting *Candida albicans*. Biochim Biophys Acta
  1860:2097-2106.
- 635 7. Ding Y, Li Z, Li Y, Lu C, Wang H, Shen Y, Du L. 2016. HSAF-induced antifungal effects
  636 in *Candida albicans* through ROS-mediated apoptosis. RSC Adv 6:30895-30904.
- 8. Yu HL, Jiang SH, Bu XL, Wang JH, Weng JY, Yang XM, He KY, Zhang ZG, Ao P, Xu J,
- 638 Xu MJ. 2017. Structural diversity of anti-pancreatic cancer capsimycins identified in

Applied and Environmental Microbiology

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

| mangrove-derived Streptomyces xiamenensis 318 and post-modification via a novel              |
|----------------------------------------------------------------------------------------------|
| cytochrome P450 monooxygenase. Sci Rep 7:40689.                                              |
| 9. Cao S, Blodgett JA, Clardy J. 2010. Targeted discovery of polycyclic tetramate            |
| macrolactams from an environmental Streptomyces strain. Org Lett 12:4652-4654.               |
| 10. Liu Y, Wang H, Song R, Chen J, Li T, Li Y, Du L, Shen Y. 2018. Targeted discovery and    |
| combinatorial biosynthesis of polycyclic tetramate macrolactam combamides A-E. Org Lett      |
| 20:3504-3508.                                                                                |
| 11. Lou L, Qian G, Xie Y, Hang J, Chen H, Zaleta-Rivera K, Li Y, Shen Y, Dussault PH, Liu    |
| F, Du L. 2011. Biosynthesis of HSAF, a tetramic acid-containing macrolactam from             |
| Lysobacter enzymogenes. J Am Chem Soc 133:643-645.                                           |
| 12. Li Y, Chen H, Ding Y, Xie Y, Wang H, Cerny RL, Shen Y, Du L. 2014. Iterative assembly    |
| of two separate polyketide chains by the same single-module bacterial polyketide synthase in |
| the biosynthesis of HSAF. Angew Chem Int Ed Engl 53:7524-7530.                               |
| 13. Xu L, Wu P, Wright SJ, Du L, Wei X. 2015. Bioactive polycyclic tetramate macrolactams    |
| from Lysobacter enzymogenes and their absolute configurations by theoretical ECD             |
| calculations. J Nat Prod 78:1841-1847.                                                       |
| 14. Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. 2018. Biosynthesis of the polycyclic    |
| system in the antifungal HSAF and analogues from Lysobacter enzymogenes. Angew Chem          |
| Int Ed Engl 57:6221-6225.                                                                    |
| 15. Xie Y, Wright S, Shen Y, Du L. 2012. Bioactive natural products from Lysobacter. Nat     |
| Prod Rep 19:1277-1287.                                                                       |
| 16. Jakobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H. 1996.               |
| 31                                                                                           |
|                                                                                              |

662 J Antibiot 49:1101-1104.

17. Hashidoko Y, Nakayama T, Homma Y, Tahara S. 1999. Structure elucidation of
xanthobaccin A, a new antibiotic produced from *Stenotrophomonas* sp strain SB-K88.
Tetrahed Lett 40:2957-2960.

Gunasekera SP, Gunasekera M, Mccarthy P. 1991. Discodermide - a new bioactive
macrocyclic lactam from the marine sponge *Discodermia-Dissoluta*. J Org Chem
56:4830-4833.

19. Kanazawa S, Fusetani N, Matsunaga S. 1993. Cylindramide - cytotoxic tetramic acid
lactam from the marine sponge *Halichondria-Cylindrata* Tanita and Hoshino. Tetrahed Lett
34:1065-1068.

20. Hoshino S, Wong CP, Ozeki M, Zhang HP, Hayashi F, Awakawa T, Asamizu S, Onaka H,

Abe I. 2018. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from
a combined-culture of *Umezawaea* sp and mycolic acid-containing bacterium. J Antibiot
71:653-657.

Antosch J, Schaefers F, Gulder TA. 2014. Heterologous reconstitution of ikarugamycin
biosynthesis in *E. coli*. Angew Chem Int Ed Engl 53:3011-3014.

678 22. Zhang G, Zhang W, Zhang Q, Shi T, Ma L, Zhu Y, Li S, Zhang H, Zhao YL, Shi R,

679 Zhang C. 2014. Mechanistic insights into polycycle formation by reductive cyclization in

ikarugamycin biosynthesis. Angew Chem Int Ed Engl 53:4840-4844.

23. Greunke C, Glöckle A, Antosch J, Gulder TAM. 2017. Biocatalytic total synthesis of

ikarugamycin. Angew Chem Int Ed Engl 56:4351-4355.

Applied and Environmental Microbiology

AEM

683

| 684 | 33:496-499.                                                                                      |
|-----|--------------------------------------------------------------------------------------------------|
| 685 | 25. Lu J, Holmgren A. 2014. The thioredoxin antioxidant system. Free Radical Biol Med            |
| 686 | 66:75-87.                                                                                        |
| 687 | 26. King KY, Horenstein JA, Caparon MG. 2000. Aerotolerance and peroxide resistance in           |
| 688 | peroxidase and PerR mutants of Streptococcus pyogenes. J Bacteriol 182:5290-5299.                |
| 689 | 27. Stahl W, Sies H. 2003. Antioxidant activity of carotenoids. Mol Aspect Med 24:345-351.       |
| 690 | 28. Schoner TA, Gassel S, Osawa A, Tobias NJ, Okuno Y, Sakakibara Y, Shindo K,                   |
| 691 | Sandmann G, Bode HB. 2016. Aryl polyenes, a highly abundant class of bacterial natural           |
| 692 | products, are functionally related to antioxidative carotenoids. ChemBioChem 17:247-253.         |
| 693 | 29. Wang Y, Qian G, Li Y, Wright S, Shen Y, Liu F, Du L. 2013. Biosynthetic mechanism for        |
| 694 | sunscreens of the biocontrol agent Lysobacter enzymogenes. PLoS One 8:e66633.                    |
| 695 | 30. Mironov A, Seregina T, Nagornykh M, Luhachack LG, Korolkova N, Lopes LE, Kotova              |
| 696 | V, Zavilgelsky G, Shakulov R, Shatalin K, Nudler E. 2017. Mechanism of H <sub>2</sub> S-mediated |
| 697 | protection against oxidative stress in Escherichia coli. Proc Nat Acad Sci U S A                 |
| 698 | 114:6022-6027.                                                                                   |
| 699 | 31. Li S, Du L, Yuen G, Harris SD. 2006. Distinct ceramide synthases regulate polarized          |
| 700 | growth in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 17:1218-1227.               |
| 701 | 32. Wang Y, Zhao Y, Zhao Y, Zhao Y, Shen Y, Su Z, Xu G, Du L, Huffman JM, Venturi V,             |
| 702 | Qian G, Liu F. 2014. Transcriptomic analysis reveals new regulatory roles of Clp signaling in    |
| 703 | secondary metabolite biosynthesis and surface motility in Lysobacter enzymogenes OH11.           |
| 704 | Appl Microbiol Biotechnol 98:9009-9020.                                                          |

24. Davies J. 2006. Are antibiotics naturally antibiotics? J Industr Microbiol Biotech

705

706

| 707 | 34. Chobot V, Hadacek F, Kubicova L. 2014. Effects of selected dietary secondary             |
|-----|----------------------------------------------------------------------------------------------|
| 708 | metabolites on reactive oxygen species production caused by iron(II) autoxidation. Molecules |
| 709 | 19:20023-20033.                                                                              |
| 710 | 35. Chobot V. 2010. Simultaneous detection of pro- and antioxidative effects in the variants |
| 711 | of the deoxyribose degradation assay. J Agr Food Chem 58:2088-2094.                          |
| 712 | 36. Zhao CY, Dodin G, Yuan CS, Chen HF, Zheng RL, Jia ZJ, Fan BT. 2005. "In vitro"           |
| 713 | protection of DNA from Fenton reaction by plant polyphenol verbascoside. Biochim Biophys     |
| 714 | Acta-Gen Subj 1723:114-123.                                                                  |
| 715 | 37. Kimeswenger S, Schwarz A, Fodinger D, Muller S, Pehamberger H, Schwarz T,                |
| 716 | Jantschitsch C. 2016. Infrared A radiation promotes survival of human melanocytes carrying   |
| 717 | ultraviolet radiation-induced DNA damage. Exp Dermatol 25:447-452.                           |
| 718 | 38. Maynard A, Butler NL, Ito T, da Silva AJ, Murai M, Chen T, Koffas MAG, Miyoshi H,        |
| 719 | Barquera B. 2019. Antibiotic korormicin A kills bacteria by producing reactive oxygen        |
| 720 | species. J Bacteriol 201: e00718-18.                                                         |
| 721 | 39. Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S. 2006. The Pseudomonas             |
| 722 | aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol          |
| 723 | 8:1318-1329.                                                                                 |
| 724 | 40. Santos AL, Oliveira V, Baptista I, Henriques I, Gomes NCM, Almeida A, Correia A,         |
| 725 | Cunha A. 2013. Wavelength dependence of biological damage induced by UV radiation on         |
| 726 | bacteria. Arch Microbiol 195:63-74.                                                          |

chelator - Siderophore: A review. Microbiol Res 212:103-111.

33. Khan A, Singh P, Srivastava A. 2018. Synthesis, nature and utility of universal iron

| 727 | 41. Halliwell B, Aeschbach R, Loliger J, Aruoma OI. 1995. The characterization of           |
|-----|---------------------------------------------------------------------------------------------|
| 728 | antioxidants. Food Chem Toxicol 33:601-617.                                                 |
| 729 | 42. Hadacek F, Bachmann G, Engelmeier D, Chobot V. 2011. Hormesis and a chemical            |
| 730 | raison d'etre for secondary plant metabolites. Dose-Response 9:79-116.                      |
| 731 | 43. Macomber L, Rensing C, Imlay JA. 2007. Intracellular copper does not catalyze the       |
| 732 | formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616-1626.           |
| 733 | 44. Mello AC, Meneghini R. 1991. Iron is the intracellular metal involved in the production |
| 734 | of DNA damage by oxygen radicals. Mutat Res 251:109-113.                                    |
| 735 | 45. Mello AC, Meneghini R. 1984. In vivo formation of single-strand breaks in DNA by        |
| 736 | hydrogen-peroxide is mediated by the Haber-Weiss Reaction. Biochim Biophys Acta             |
| 737 | 781:56-63.                                                                                  |
| 738 | 46. Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative    |
| 739 | stress: lessons from a model bacterium. Nat Rev Microbiol 11:443-454.                       |
| 740 | 47. De Laat J, Gallard H. 1999. Catalytic decomposition of hydrogen peroxide by Fe(III) in  |
| 741 | homogeneous aqueous solution: Mechanism and kinetic modeling. Environ Sci Technol           |
| 742 | 33:2726-2732.                                                                               |
| 743 | 48. Sontag B, Gerlitz M, Paululat T, Rasser HF, Grun-Wollny I, Hansske FG. 2006.            |
| 744 | Oxachelin, a novel iron chelator and antifungal agent from Streptomyces sp GW9/1258. J      |
| 745 | Antibiot 59:659-663.                                                                        |
| 746 | 49. Tortora ML, Diaz-Ricci JC, Pedraza RO. 2011. Azospirillum brasilense siderophores       |
| 747 | with antifungal activity against Colletotrichum acutatum. Archives of Microbiology          |
| 748 | 193:275-286.                                                                                |
|     | 25                                                                                          |

Applied and Environmental Microbiology

Applied and Environmental

749

750

751

752

753 dendritic zinc porphyrins. J Am Chem Soc 127:7700-7702. 52. Thellamurege NM, Si D, Cui F, Zhu H, Lai R, Li H. 2013. QuanPol: A full spectrum and 754 seamless QM/MM program. J Comput Chem 34:2816-2833. 755 53. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, 756 Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA. 1993. General 757 758 atomic and molecular electronic-structure system. J Comput Chem 14:1347-1363. 759 54. Gordon MS, Schmidt MW. 2005. Advances in electronic structure theory: GAMESS a decade later. In Dykstra CE, Frenking G, Kim KS, Scuseria GE (ed), Theory and 760 Applications of Computational Chemistry. Elsevier. 761 55. Halgren TA, Nachbar RB. 1996. Merck molecular force field. IV. conformational 762 energies and geometries for MMFF94. J Comput Chem 17:587-615. 763 56. Halgren TA. 1996. Merck molecular force field. II. MMFF94 van der Waals and 764 electrostatic parameters for intermolecular interactions. J Comput Chem 17:520-552. 765 766 57. Halgren TA. 1996. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553-586. 767 58. Halgren TA. 1996. Merck molecular force field. V. Extension of MMFF94 using 768 experimental data, additional computational data, and empirical rules. J Comput Chem 769 17:616-641. 770 36

50. Palumbo JD, Sullivan RF, Kobayashi DY. 2003. Molecular characterization and

expression in Escherichia coli of three beta-1,3-glucanase genes from Lysobacter

51. Li WS, Jiang DL, Suna Y, Aida T. 2005. Cooperativity in chiroptical sensing with

enzymogenes strain N4-7. J Bacteriol 185:4362-4370.

Applied and Environmental Microbiology

| 771 | 59. Becke AD. 1993. Density - functional thermochemistry. III. The role of exact exchange.    |
|-----|-----------------------------------------------------------------------------------------------|
| 772 | J Chem Phys 98:5648-5652.                                                                     |
| 773 | 60. Hertwig RH, Koch W. 1997. On the parameterization of the local correlation functional.    |
| 774 | What is Becke-3-LYP? Chem Phys Lett 268:345-351.                                              |
| 775 | 61. Grimme S, Antony J, Ehrlich S, Krieg H. 2010. A consistent and accurate ab initio         |
| 776 | parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. |
| 777 | J Chem Phys 132:154104.                                                                       |
| 778 | 62. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA. 1982.        |
| 779 | Self-Consistent Molecular-Orbital Methods .23. A Polarization-Type Basis Set for 2nd-Row      |
|     |                                                                                               |

780 Elements. J Chem Phys 77:3654-3665.

781

782

#### **Table 1.** Bacterial strains used in this study.

#### 784

| Bacterial strains   | Relevant characteristics <sup>a</sup> | Source/reference |  |
|---------------------|---------------------------------------|------------------|--|
| Lysobacter          |                                       |                  |  |
| L. enzymogenes OH11 | Wild-type, Kan <sup>r</sup>           | CGMCC No. 1978   |  |
| ΔHSAF               | HSAF deficiency strain                | (32)             |  |

785 <sup>*a*</sup>Kan<sup>r</sup>, kanamycin resistant.

#### 786

# 787 **Table 2.** Primers used in this study.

#### 788

| Primers | Sequence(5'-3')              |
|---------|------------------------------|
| OH11-F  | CGGGGCCCCATTGGAACGACAGCCTCTT |
| OH11-R  | CCGCTCGAGCGGCAAGACAGGGGAAGA  |
| 3655-F  | CGGGGCCCTTTGGTTGTTCCATCCGA   |
| 3655-R  | CGGGATCCATCGAGGAGCACGGCATC   |
| OH13-F  | CTGCAGGACTTCGAACACA          |
| OH13-R  | GATTGACTCCTTGGTGCTC          |
| E-F     | ATAACGGAGAACGGAATCG          |
| E-R     | ACGCATTACTATCTGACCAA         |
|         |                              |

789

790

791

792

793

Applied and Environmental Microbiology

Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

# 794 **Figure Legends**

795

**Figure 1**. Chemical structure of HSAF and analogs (alteramides) isolated from *Lysobacter* 

797 *enzymogenes*.

798 Figure 2. Formation of PoTeM-Fe complexes. a) Appearance of cultures of L. enzymogenes OH11 wild type (WT) and HSAF non-producer mutant ( $\Delta$ HSAF) grown in M813m medium 799 containing a different concentration of FeSO<sub>4</sub>. b) Appearance of the total crude extract of 800 PoTeM (200  $\mu$ l) from cultures (25 ml) of WT and  $\Delta$ HSAF grown in M813m containing a 801 different concentration of FeSO<sub>4</sub>. c) Color change in the solution of FeSO<sub>4</sub> (10 mM, 100 µl) 802 803 when added with the total crude extract of PoTeM (1-50  $\mu$ l, 2  $\mu$ g/ $\mu$ l) from WT cultured in 804 M813m containing 10  $\mu$ M FeSO<sub>4</sub>, with methanol as negative control. I, positive control 805 (crude extract of PoTeM from WT grown in M813m containing 500 µM FeSO<sub>4</sub>). d) Color change in the solution of various iron salts (10 mM, 50 µl), without (0) or with 50 µl 806 methanol (II) or with 50  $\mu$ l (2  $\mu$ g/ $\mu$ l) of the total crude extract of PoTeM (III). e) HPLC 807 analysis of the isolated PoTeMs, with or without iron salts added. 808

Figure 3. MS analysis of the products of HSAF with FeSO<sub>4</sub> (a), Fe(NH<sub>4</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> (b), FeCl<sub>3</sub> (c) and Fe(NO<sub>3</sub>)<sub>3</sub> (d), in absence or presence of the metal chelator EDTA. Standard HSAF gave m/z 513 for [HSAF+H]<sup>+</sup> and m/z 1025 for [2HSAF+H]<sup>+</sup>). In the mixtures of HSAF and iron salts, the peak at m/z 1079 was coincident with [2HSAF-H+Fe]<sup>+</sup>, whereas the peak at m/z1591 was coincident with [3HSAF-H+Fe]<sup>+</sup>.

Figure 4. The *in vitro* antioxidant activity and the *in vivo* protective effect of HSAF for *L*. *enzymogenes* grown in the presence of  $H_2O_2$ . a) *In vitro* deoxy-D-ribose degradation assay for Applied and Environmental

|         | 819 | de  |
|---------|-----|-----|
|         | 820 | an  |
|         | 821 | an  |
|         | 822 | inc |
|         | 823 | Fig |
|         | 824 | lev |
|         | 825 | to  |
| dbol    | 826 | aft |
| Icrobio | 827 | exe |
| ξ       | 828 | μΝ  |
|         | 829 | cu  |
|         | 830 | mo  |
|         | 831 | 50  |

| 816 | the antioxidant activity of HSAF. The activity is presented as thiobarbituric acid reactive                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 817 | species (TBARS) levels relative to the control $(100\% = TBARS$ of the control reaction                                          |
| 818 | mixture without HSAF). b) In vitro assay of the Fenton reaction-caused DNA fragment                                              |
| 819 | degradation and the protective effect of HSAF. c-e) In vivo H2O2 sensitive assay of the WT                                       |
| 820 | and $\Delta$ HSAF strains cultured in M813m medium containing 0 (c), 80 (d) , or 800 $\mu$ M (e) H <sub>2</sub> O <sub>2</sub> , |
| 821 | and the $OD_{600}$ value was determined every 24 h. Data are presented as averages of three                                      |
| 322 | independent experiments each conducted in triplicate. *, $P < 0.05$ ; **, $P < 0.01$ .                                           |

**Figure 5.** The protective effect of HSAF for *L. enzymogenes* exposed to UV light and ROS level in *L. enzymogenes* under oxidative stress. a) The WT and ΔHSAF strains were exposed to UV light for 0, 10, 30, and 60 s, and the numbers of colonies on each plate were counted after 72 h of incubation at 30°C. b) Rescue of the UV-light sensitivity of ΔHSAF strain by exogenous HSAF. ΔHSAF strain was added with a variable amount of HSAF (0, 20, 80, 160 µM) and then exposed to UV light for 60 s. c) ROS level in the WT and ΔHSAF strains cultured in different media. No Fe, M813 minimal medium without FeSO<sub>4</sub>; M813m, M813 modified medium containing 10 µM FeSO<sub>4</sub>; High Fe, M813 modified medium containing 500 µM FeSO<sub>4</sub>. d) ROS level in the WT and ΔHSAF strains treated with 40 mM H<sub>2</sub>O<sub>2</sub>. e) ROS level in the WT and ΔHSAF strains treated with UV light for 60 s. Methanol was used as control. Data are presented as averages of three independent experiments each conducted in triplicate. \*, *P* < 0.05; \*\*, *P* < 0.01.

Figure 6. Molecular structure of HSAF-Fe complexes obtained from the molecular
mechanical force field method and quantum mechanical method. Two molecules (a) or three
molecules (b) of HSAF can chelate one iron ion.

### 838 Figure 1.



Applied and Environmental

Microbiology

# 847 **Figure 2.**



848

Figure 2. Formation of PoTeM-Fe complexes. a) Appearance of cultures of L. enzymogenes 849 OH11 wild type (WT) and HSAF non-producer mutant ( $\Delta$ HSAF) grown in M813m medium 850 containing a different concentration of FeSO<sub>4</sub>. b) Appearance of the total crude extract of 851 PoTeM (200  $\mu$ l) from cultures (25 ml) of WT and  $\Delta$ HSAF grown in M813m containing a 852 different concentration of FeSO<sub>4</sub>. c) Color change in the solution of FeSO<sub>4</sub> (10 mM, 100 µl) 853 when added with the total crude extract of PoTeM (1-50  $\mu$ l, 2  $\mu$ g/ $\mu$ l) from WT cultured in 854 855 M813m containing 10 µM FeSO<sub>4</sub>, with methanol as negative control. I, positive control (crude extract of PoTeM from the WT grown in M813m containing 500 µM FeSO<sub>4</sub>). d) Color 856 change in the solution of various iron salts (10 mM, 50 µl), without (0) or with 50 µl 857 methanol (II) or with 50 µl (2 µg/µl) of the total crude extract of PoTeM (III). e) HPLC 858 859 analysis of the isolated PoTeMs, with or without iron salts added.

Applied and Environmental

Microbiology

#### 860

#### 861 **Figure 3**.



Downloaded from http://aem.asm.org/ on March 31, 2021 at UNIV OF NEBRASKA-LINCOLN

863





- 870
- 871 872
- 873
- 874

### 875 **Figure 4.**



Figure 4. The *in vitro* antioxidant activity and the *in vivo* protective effect of HSAF for L.

enzymogenes grown in the presence of H<sub>2</sub>O<sub>2</sub>. a) In vitro deoxy-D-ribose degradation assay for

the antioxidative activity of HSAF. The activity is presented as thiobarbituric acid reactive

species (TBARS) levels relative to the control (100% = TBARS) of the control reaction

mixture without HSAF). b) In vitro assay of the Fenton reaction-caused DNA fragment

degradation and the protective effect of HSAF. c-e) In vivo H2O2 sensitive assay of the WT

and  $\Delta$ HSAF strains cultured in M813m medium containing 0 (c), 80 (d), or 800  $\mu$ M (e) H<sub>2</sub>O<sub>2</sub>,

and the OD<sub>600</sub> value was determined every 24 h. Data are presented as averages of three

independent experiments each conducted in triplicate. \*, P < 0.05; \*\*, P < 0.01.

878

879

880

881

882

883

884

885

886

887 888

Accepted Manuscript Posted Online

Applied and Environmental

Microbiology







Figure 5. The protective effect of HSAF for L. enzymogenes exposed to UV light and ROS 893 894 level in L. enzymogenes under oxidative stress. a) The WT and  $\Delta$ HSAF strains were exposed to UV light for 0, 10, 30, and 60 s, and the numbers of colonies on each plate were counted 895 896 after 72 h of incubation at 30°C. b) Rescue of the UV-light sensitivity of  $\Delta$ HSAF strain by exogenous HSAF.  $\Delta$ HSAF strain was added with a variable amount of HSAF (0, 20, 80, 160 897 898  $\mu$ M) and then exposed to UV light for 60 s. c) ROS level in the WT and  $\Delta$ HSAF strains cultured in different media. No Fe, M813 minimal medium without FeSO<sub>4</sub>; M813m, M813 899 900 modified medium containing 10 µM FeSO4; High Fe, M813 modified medium containing 500  $\mu$ M FeSO<sub>4</sub>. d) ROS level in the WT and  $\Delta$ HSAF strains treated with 40 mM H<sub>2</sub>O<sub>2</sub>. e) 901 ROS level in the WT and  $\Delta$ HSAF strains treated with UV light for 60 s. Methanol was used 902 903 as control. Data are presented as averages of three independent experiments each conducted 904 in triplicate. \*, *P* < 0.05; \*\*, *P* < 0.01.

Applied and Environmental Microbiology

Figure 6. 905 906

907

908

a)



Figure 6. Molecular structure of HSAF-Fe complexes obtained from the molecular 910 mechanical force field method and quantum mechanical method. Two molecules (a) or three 911 molecules (b) of HSAF can chelate one iron ion. 912