DFT study of CO_2 hydrogenation to methanol over metal nanoclusters activated on ceria interface

Alexandra Zagalskaya, Dr. Vitaly Alexandrov

Student Research Days 2021 April 12-16, 2021

University of Nebraska-Lincoln

NEBRASKA CENTER FOR

Global Greenhouse Gas Emissions by Gas

Introduction: Ecological disaster

Motivation

Metal-CeO₂ is a promising catalytic system for CO_2 hydrogenation

Solution

Goal

Developing reducible metal oxide catalysts for CO₂ conversion

Objectives

1. Find the most stable metal cluster configurations on the regular and reduced ceria

2. Calculate the possible pathways for CO₂ hydrogenation to methanol and identify the energetically favorable ones

3. Based on the theoretical results, predict the promising nanocluster/CeO₂ system

Computational Approaches

All the DFT calculations were performed using the Vienna ab initio simulation package (VASP).

metal

Stability of cluster configurations

Stoichiometric CeO₂: planar – Ru, tetrahedron – Cu, Ni. Reduced CeO₂: planar.

tetrahedron

The effect of vacancies on oxidation state

P		2.

3-vac-CeO₂. Vacancy sites are highlighted in black.

Total Bader of Me cluster	STO	3-vac
Ru	1.33	-0.60
Cu	1.05	-0.90
Ni	1.05	-0.02

In triangularly ordered trivacancy model, three oxygen vacancies reduce the six nearest Ce^{4+} ions to Ce^{3+} .

Electron transfer between Me cluster and CeO_2 -STO positively charges Me cluster, whereas electron transfer between Me cluster and CeO_2 -3VAC negatively charges Me cluster.

CO₂ hydrogenation to CH₃OH

^{*1} stable only over Ru-CeO₂, ^{*2} not stable over Ni-CeO₂

Formate pathway

CO_2 hydrogenation to CH_3OH in the presence of O_{vac}

- Surface vacancies under the metal cluster may promote the adsorption of CO₂ due to the change of metal charge
- In case of the surface vacancy far from the cluster, dissociation of CO₂ accompanies with CO formation and occupation of O_{vac} site by oxygen
- In both cases of stoichiometric and reduced ceria formation of methanol is more favorable over Ni-CeO₂

Nebraska Center For Lincoln ENERGY SCIENCES RESEARCH

Acknowledgements

THANK YOU!

