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Abstract 
 
Rhodopseudomonas palustris CGA009 is a purple non-sulfur bacterium (PNSB) that can fix CO2 
and nitrogen or break down organic compounds for its carbon and nitrogen requirements. Light, 
inorganic, and organic compounds can all be used for its source of energy. Excess electrons 
produced during its metabolic processes can be exploited to produce hydrogen gas or 
biodegradable polyesters (polyhydroxybutyrate). A genome-scale metabolic model of the 
bacterium was reconstructed to study the interactions between photosynthesis, carbon dioxide 
fixation, and the redox state of the quinone pool. A comparison of model-predicted flux values 
with published in vivo MFA fluxes resulted in predicted errors of 5-19% across four different 
growth substrates. The model predicted the presence of an unidentified sink responsible for the 
oxidation of excess quinols generated by the TCA cycle. Furthermore, light-dependent energy 
production was found to be highly dependent on the rate of quinol oxidation. Finally, the extent 
of CO2 fixation was predicted to be dependent on the amount of ATP generated through the 
electron transport cycle, with excess ATP going toward the energy-demanding CBB pathway. 
Based on this analysis, it is hypothesized that the quinone redox state acts as a feed-forward 
controller of the CBB pathway, signaling the amount of ATP available.  
 
Introduction 
 
Purple non-sulfur Bacteria (PNSB) are considered to be among the most metabolically versatile 
groups of bacteria1,2. Within this class, Rhodopseudomonas palustris CGA009 (hereafter R. 
palustris) demonstrates this elasticity through its ability to survive in a myriad of diverse 
environmental conditions3. It can grow either aerobically or anaerobically, utilize organic 
(heterotrophic) or inorganic (autotrophic) carbon sources, and exploit light to obtain energy 
when growing anaerobically3. Several interesting features have been observed in this bacterium, 
such as its consumption of fatty acids, dicarboxylic acids, and aromatic compounds including 
lignin monomers4-6. It is also one of two known bacteria that can express three unique 
nitrogenases, each with a different transition-metal cofactor7. Furthermore, this metabolically 
versatile strain’s genome includes the aerobic and anaerobic pathways for three of the four 
known strategies that microbes use to break down aromatic compounds, such as lignin 
breakdown products (LBPs)8. Harnessing R. palustris’ unique metabolic versatilities for the 
conversion of plant biomass to value-added products, such as polyhydroxybutyrate (PHB)9, n-
butanol10, and hydrogen11,12, has garnered increasing interest. However, a system’s level 
understanding of how the bacterium’s complex web of metabolic modules operates in response 
to environmental changes is hindering the development of the PNSB as a biochemical chassis. 
 
Several studies conducted on R. palustris have shown that in addition to the Calvin-Benson-
Bassham (CBB) cycle’s role of carbon assimilation during autotrophic growth, the pathway 
plays a major role in maintaining redox balance under heterotrophic growth10,12-14. It has been 
shown that heterotrophic growth of the PNSB on substrates that are more reduced than biomass, 
such as LBPs, is dependent on the availability of an electron sink13. CO2-fixation using the 
enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO), nitrogen-fixation through 
the enzyme nitrogenase12, and the supplementation of an electron acceptor (e.g., TMAO)15 all 
prevent the inhibitory accumulation of excess reducing agents. The use of CO2 as a redox 
balancing strategy for the conversion of plant biomass to value-added products is an attractive 
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approach that could increase profitability while improving sustainability. However, the complex 
interplay between the electrons supplied by the catabolism of different carbon sources, CO2 
fixation, and the cyclic electron flow during photosynthesis is not fully understood, thus 
diminishing the ability to engineer this promising bacterium. 
 
A Genome-Scale Metabolic Model (GSMM) provides a mathematical representation of an 
organism’s metabolic functionalities16. The metabolic network represents an organism’s 
available repertoire of biochemical transformations constructed as a stoichiometric matrix17. Due 
to the underdetermined nature of metabolic networks, optimization tools are used to predict 
reaction rates for a pre-specified objective function such as the maximization of biomass18. One 
of the most commonly applied optimization tools used to model metabolism is Flux Balance 
Analysis (FBA). FBA performs a pseudo-steady state mass balance for each metabolite in the 
network to predict the maximum growth rate and corresponding reaction fluxes during the cell’s 
exponential growth phase19. Due to the high dimensionality of the network, other tools such as 
Flux Variability Analysis (FVA) are used to determine the sensitivity of growth rate as a 
function of each reaction flux20. Finally, a modified FBA formulation can be used to predict the 
set of essential genes under a specified growth condition21. Thus far, a limited number of small-
scale metabolic reconstructions have been developed for PNSB, examining either the central 
carbon metabolism22 or the electron transport chain23. However, these models are limited in 
scope, as they consider less than 4% of the organism’s metabolic functionality and are therefore 
incapable of capturing system-wide interactions between different metabolic modules. Very 
recently, a GSMM of the bacterium was reconstructed and used to test an array of cellular 
objectives during phototrophic growth. Anaerobic growth on acetate, benzoate, and 4-
hydroxybenzoate was simulated using 8 different biologically relevant objective functions. The 
model predicted that the organism primarily optimized for growth, ATP production, and 
metabolic efficiency. However, the model could further be improved by integrating recently 
annotated metabolic pathways of lignin monomer degradation24, and by making use of 
experimental data on gene essentiality25 and metabolic flux analysis for growth under different 
carbon sources13,14 to validate and refine the network. 
 
In this work, a Genome-Scale Metabolic Model (GSMM) of R. palustris was constructed to 
model the bacterium’s metabolic functionality under different environmental conditions. The 
model was used to simulate growth under different carbon sources and shows excellent 
agreement with experimentally measured fluxes13,14. Gene essentiality analysis was also 
performed for aerobic and anaerobic growth on acetate. The predicted essential genes were 
compared with available trans-mutagenesis data25, and an accuracy of 84% was achieved. After 
the model indicated the presence of an unidentified quinol sink, in silico simulations were 
combined with published in vivo flux measurements13,14 to study the effect (and extent) of the 
quinone redox state on cellular growth, electron transport rate, and CO2 fixation. These results 
suggest that redox state acts as a feed-forward controller of the highly energy-demanding CBB 
cycle by regulating the rate of light-generated ATP. Overall, an understanding of the metabolic 
control points of this interconnected system constitutes the first step towards engineering strains 
capable of more efficiently harnessing photosynthetic energy and rerouting this energy towards 
bio-production and lignin valorization. 
 
Methods  
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Model reconstruction 
A draft model was first generated in KBase26 based on R. palustris’ genome (downloaded from 
the NCBI database on 04/12/2018). KBase uses annotated features in the genome to construct a 
list of reactions associated with genes in the organism. Previously published work of the 
bacterium’s metabolic network22 was used to manually curate pathways from the central carbon 
metabolism and to ensure correct cofactor usage and gene association. This resulted in an 
expanded network of high-confidence reactions, all associated with genes in R. palustris. 
Experimentally measured concentrations of biomass components are available for R. palustris 
when grown on acetate13 and were used to develop the biomass equation (see supplementary file 
1). To minimize the addition of low-confidence reactions during gapfilling, the process was 
broken down into two steps. First, a subset of high-confidence reactions from a recently 
published genome-scale model of R. palustris27 was added to the draft model. Here, high-
confidence reactions are those that are associated with a published source of annotation. At this 
point, the majority of the reactions required to gapfill the biomass equation existed in partially 
incomplete linear pathways. Therefore, the ModelSEED database28 was used to gapfill the model 
generated in KBase. In addition, annotated metabolic pathways for the breakdown of multiple 
aromatic compounds including lignin breakdown products were found in literature24 and in 
organism-specific biochemical databases29,30, and were subsequently added to the model 
(supplementary file 2). Finally, annotated R. palustris genes were mined from three databases 
(KEGG29, BioCyc30, and UniProt31) to validate the Gene-Protein-Reaction (GPR) associations 
established in the model and to include GPR relationships for reactions added during the 
gapfilling process (supplementary file 3).  
 
Model simulations  
Parsimonious Flux Balance Analysis (pFBA)32 was used to simulate growth under different 
environmental conditions. pFBA is analogous to FBA but adds an outer objective that minimizes 
the sum of all reaction fluxes. Objective tilting33 was used to formulate both objectives in one 
function as shown below. 
 

 

 

 

 

Where I and J are the sets of metabolites and reactions in the model, respectively. Sij is the 
stoichiometric coefficient of metabolite i in reaction j and vj is the flux value of reaction j. 
Parameters LBj and UBj denote the minimum and maximum allowable fluxes for reaction j, 
respectively. vbiomass is the flux of the biomass reaction which mimics the cellular growth rate.  
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Model validation 
Metabolic Flux Analysis (MFA) measurements from anaerobic growth on acetate13, fumarate, 
succinate, and butyrate14 were compared with model predicted fluxes. Model accuracy for each 
growth condition was calculated by taking the sum of percent errors between pFBA predicted 
and MFA values (see supplementary file 4 for example). In addition, R. palustris’ essential 
genes, determined experimentally for aerobic growth on acetate25, was used to validate the 
essential genes predicted by the model. Gene essentiality was predicted in the model by 
sequentially knocking out each reaction and determining the resulting effect on the biomass 
reaction rate21. If a reaction knockout resulted in a predicted growth rate that was less than 10% 
of the wild type growth rate, the reaction was considered essential. Reaction GPRs were then 
used to map the list of essential reactions to essential genes. Finally, the list of experimentally 
determined essential metabolic genes25 were compared with model predicted essential genes to 
determine the specificity and sensitivity of the predictions (see supplementary file 5). 
 
Results and Discussion  
Model Reconstruction and validation 
A summary of the model’s major statistics is shown in Figure 1A. Overall, the 940 genes 
associated with model reactions account for 62% of the genes involved in energy metabolism, 
biosynthesis, carbon & nitrogen metabolism, and cellular processes in R. palustris’ genome3. 
Experimental measurements of biomass component concentrations were obtained for growth on 
acetate13 (Figure 1B) and converted into stoichiometric coefficients for the model’s biomass 
equation (see supplementary file 1). Thus, an initial high-confidence model containing 540 genes 
and 915 reactions with no orphan reactions was constructed. The gap-filling procedure was 
carried out next in KBase26 using reactions from the ModelSEED database28. Organism-specific 
biochemical databases including KEGG, UniProt, and BioCyc were then used to annotate added 
reactions (Figure 1C). This resulted in the addition of 328 annotated and 110 unannotated 
(orphan) reactions. The inclusion of these reactions is necessary to ensure biomass production. 
pFBA was used to simulate growth on a number of different carbon sources, including 
carboxylic acids (acetate, fumarate, succinate and butyrate) and lignin monomers (supplementary 
file 2). pFBA is analogous to FBA but adds an outer objective that minimizes the sum of all 
reaction fluxes (see Methods). This is justified by the assumption that cells synthesize the 
minimum amount of cellular machinery required to maintain the maximal growth rate32. 
Simulating growth using pFBA has two main advantages over FBA. First, pFBA avoids 
unrealistic flux predictions for reactions participating in thermodynamically infeasible cycles 
(TICs)34. TICs are usually removed from GSMs to avoid false predictions; however, when 
analyzing highly connected networks like that of R. palustris, removing these cycles can lead to 
the model missing certain functionalities and metabolic modes utilized by the organism. pFBA 
avoids these false predictions by the additional constraint that reaction fluxes should be 
minimized. Second, the pFBA formulation results in a significantly reduced set of optimal 
solutions compared to FBA. Flux Balance Analysis usually results in a large number of alternate 
optimal solutions (especially in highly connected networks), most of which are not biologically 
relevant, and can therefore lead to false conclusions35. pFBA’s additional objective greatly 
restricts the solution space and leads to more biologically insightful conclusions32. Essentiality 
analysis identified 368 essential reactions, out of which 249 were associated with gene 
annotations in the model. Comparison with in vivo gene essentiality data for aerobic growth on 
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acetate25 was then used to check the model accuracy (Figure 1D). The calculated sensitivity and 
false negative rate (FNR) are consistent with recently published GSMMs36,37. Moreover, given 
that this is a non-model organism with no well-characterized close relatives, high-confidence 
annotation was not available for less-studied pathways, therefore an automated pipeline like 
GrowMatch38 could not be implemented to further improve essentiality predictions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The effect of the quinone pool on light uptake, carbon dioxide fixation, and growth 
During initial growth simulations, growth was observed to be hindered due to the accumulation 
of excess quinols formed in the TCA cycle. Since no high-confidence reaction was found to 
consume quinols in R. palustris, a quinol “sink” reaction was added to the model. Sink reactions 
are often incorporated into metabolic models when a metabolite is known to be produced during 
metabolism but for which no means of consumption have been identified39, or to describe the 
accumulation of a storage compound39 (e.g. glycogen). Furthermore, recent experimental work 
with R. palustris TIE-1 reported the presence of an unidentified quinol-oxidizing reaction that 
had not been accounted for previously40, giving further support to this prediction. To determine 
the effect of the quinone pool on growth, pFBA simulations were conducted under different 
quinol sink rates to qualitatively predict how changes in the quinone redox state affected the rest 
of the metabolic network. The quinol sink reaction was treated as a parameter in the model and 
pFBA simulations were conducted at varying quinol oxidation (sink) rates to determine how 
light uptake (i.e. Electron Transport Rate or ETR), growth, and CO2 fixation are affected by 
changes in the quinone redox state (Figure 2). Carbon uptake was restricted to a maximum value 
of 100 mmol/gDW/hr for acetate and 50 mmol/gDW/hr for fumarate, succinate, and butyrate to 
ensure the same number of carbons were being up taken. MFA values were scaled to the same 
carbon uptake rates13,14. For growth on butyrate, the supplementation of CO2 is required for 
growth, as the substrate is more reduced than biomass and requires an electron sink14. The media 

Figure 1. Summary of model statistics and validation. (A) Overall model 
statistics. (B) Model biomass component compositions. (C) Sources of 
gene annotation. (C) Gene essentiality analysis results. 
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was supplied with CO2 at a maximum uptake rate of 32.1 mmol/gDW/hr to match MFA 
observations. Since steady-state GSMMs cannot capture metabolite concentrations, the redox 
state cannot be calculated directly. Instead, the qualitative behavior of the redox state was 
predicted by varying the rate of the quinol sink. As the quinol oxidation rate increases, the 
quinone pool becomes more oxidized. Using experimental MFA data13,14, the quinol oxidation 
rate was predicted for each of the four substrates (Table 1). These values were calculated by 
minimizing the sum of errors between the in silico generated pFBA fluxes and the in vivo MFA 
flux values. The table also shows the quinone reduction rate through the TCA cycle for each 
carbon source. The percentage of CO2 fixed was defined as the rate of CO2 fixation divided by 
the total rate of CO2 produced metabolically. Figure 3 shows the resulting flux predictions 
obtained at the predicted quinol oxidation rates for growth on acetate (figure 3A), and the 
calculated percent errors of these predictions for each carbon substrate (figure 3B). A 
comparison of flux predictions with MFA values for the other three carbon sources is provided in 
supplementary file 2.  
 
For growth on acetate and butyrate, light uptake (i.e. ETR) shows two distinct regions based on 
the extent of quinol oxidation (Figure 2A). Under low oxidation rates, flux through the quinol-
producing succinate dehydrogenase reaction is avoided by using the glyoxylate shunt and 
subsequently the CBB cycle. Therefore, both light uptake and CO2 fixation increase rapidly in 
this region. In the second region, at high quinol oxidation rates, flux shifts toward the oxidative 
TCA cycle. Therefore, in this region, both the Electron Transport Chain (ETC) activity and the 
rate of CO2 fixation decrease with increasing quinol oxidation. Furthermore, as can be seen from 
Table 1, the ratio of quinol oxidation rate to quinone reduction rate is similar for both carbon 
sources. Due to the supplementation of CO2 during growth on butyrate, the percentage of CO2 
fixation could not be calculated. During growth on succinate, the production of quinols through 
succinate dehydrogenase cannot be avoided, therefore light uptake rate increases linearly with 
the rate of quinol oxidation. Moreover, the rates of quinol oxidation and quinone reduction are 
equivalent, indicating that the quinone pool is more reduced when compared to the redox state 
during growth on acetate and butyrate. This leads to a reduced electron flow through the ETC, 
and subsequently lower ATP generation. Finally, the model predicts that during growth on the 
highly oxidized (compared to cell biomass) carbon source fumarate, the rate of the quinol sink 
does not affect the flux distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Effect of the Quinol sink rate on: (A) Light uptake rate (B) Growth rate (C) Carbon source
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Carbon 
source 

QH2 oxidation 
rate 

(mmol/gDW/hr) 

Q reduction 
ratea 

(mmol/gDW/hr) 

Electron 
transport rate 
(mol/gDW/hr) 

CO2 fixation 
rate  

(mol/gDW/hr) 

% 
CO2 

fixedb 

Net CO2 
excretion rate 

(mmol/gDW/hr) 
Acetate 52.5 39.1 5.3 29.7 73.2 10.9

Butyrate 54.9 37.4 5.4 57.8 - -18.6c

Succinate 49.8 49.2 3.0 35.6 50.6 34.8
Fumarate 0 0 2.3 17.3 25.1 51.5

a The rate of quinone reduction in the TCA cycle.
b The rate of CO2 fixation divided by the rate of total CO2 produced. 
c CO2 was supplied in the media during growth on butyrate. 

Figure 3. Comparison of model-predicted vs MFA-generated 
flux values for reactions involved in central carbon 
metabolism. (A) Metabolic flux map showing reaction 
rates for growth on acetate (B) Percentage error

Table 1. Predicted reaction rates for growth on four different carbon sources 
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A similar parameter sampling procedure was performed to determine the effect of light uptake on 
growth. Light uptake rate was set as a parameter and the quinol oxidation rate was fixed to the 
value predicted based on MFA fluxes (Figure 4). Again, the plots show two distinct growth 
regions: (i) a low-light (LL) energy-limited region, and (ii) a high-light (HL) carbon-limited 
region. In the LL region, growth is highly dependent on the amount of light available and the 
model predicts that all of the ATP produced is used to convert the carbon source into biomass 
precursors. Therefore, no ATP remains for the energy-intensive CBB pathway. In the HL region, 
the maximum substrate uptake rate is reached, and the carbon source cannot be incorporated any 
faster. The additional energy produced from light is then directed towards CO2 fixation. 
Although the model predicts that the rate of CO2 fixation increases linearly with light uptake 
rate, kinetic and thermodynamic constrains on the highly inefficient CO2-fixing RuBisCO 
enzyme41 hinder this process at high light uptake.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proposed mechanism for the interplay between the quinone redox state, the electron 
transport rate, and CO2 fixation.  
Based on the effect of the quinol oxidation rate on light uptake and on the model’s flux 
distribution, a mechanistic explanation of the system-wide metabolic interactions can be 
postulated. As shown in Figure 5, increased flux through the oxidative TCA cycle leads to the 
accumulation of reduced quinols. This in turn leads to a restriction in the flow of electrons 

Figure 4. Effect of the light sink rate on (A) Growth rate, (B) Carbon source uptake rate, (C) Carbon
fixation rate, and (D) Carbon dioxide excretion rate for growth on four carbon sources. Ace: 
acetate, but: butyrate, suc: succinate, fum: fumarate. In A, B, and D, the lines for succinate and 
fumarate lie on top of each other.
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through the ETC and consequently in the amount of ATP produced. The CBB system thus lacks 
the energy required to fix CO2. Therefore, the quinone redox state is predicted to act as a feed-
forward controller to the energetically expensive CBB pathway, indicating how much ATP is 
available at a given condition.  
 
Comparison of pFBA generated growth simulations with MFA data leads to the hypothesis that 
an unidentified quinone:oxidoreductase reaction has to occur to obtain the observed flux 
distribution. A previous study on the PNSB R. capsulatus suggests that complex I, the 
NADH:quinone oxidoreductase enzyme, is responsible for the observed quinol oxidation through 
reverse electron flow42. However, the model predicts that the rate of quinol oxidation required 
cannot be accounted for through complex I only, which showed low activity. Furthermore, based 
on the high thermodynamic cost of reverse electron flow, it appears unlikely that it can account 
for the predicted rate of quinol oxidation23.  
 
Although the source of quinol oxidation (sink) has yet to be identified, there are a number of 
candidate reactions that can carry out this role. Primarily, the malate:quinone dehydrogenase 
(MDH) appears to be a potential reaction for oxidizing excess quinols. In the forward direction, 
this reaction converts malate into oxaloacetate and produces ubiquinol in the process. A second 
NAD-dependent malate dehydrogenase is also coded for by R. palustris that could perform the 
same function. Knocking out and over-expressing these enzymes could be employed to 
investigate their role in ETR, ATP production, and CO2 fixation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion 
In this study, a genome-scale metabolic network was used to propose a system-wide mechanistic 
model of the interactive system that includes photosynthesis, carbon dioxide fixation, and the 
quinone redox state. The model was validated using experimental genome essentiality data25 
(84% accuracy), and flux measurement data13,14 on four carbon sources (5-19% prediction error). 
Model simulations predict the presence of an unidentified quinol sink. Predictions also indicate 
that the extent of CO2 fixation is dependent on the amount of ATP present, with the quinone 

Figure 5. Schematic of a proposed mechanism for the interaction between the quinone redox state,
electron transport rate, and carbon fixation. (A) High rate of quinol oxidation. (B) Low rate of quinol 
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redox state acting as a feed forward signal to the CBB system. Going forward, the proposed 
mechanism can be used to generate strategies for engineering strains capable of more efficiently 
harnessing photosynthetic energy, and that have the ability to reroute energy towards bio-
production and lignin valorization. Future experimental work will be conducted to measure the 
electron transport rate, intracellular ATP concentration, and RuBisCO gene expression across 
different quinone redox states to strengthen the proposed hypothesis and further refine the model.  
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