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Abstract—Risk management is critical for wind producers to6
participate in electricity markets. Beside market price volatility7
and uncertainty, wind producers are facing an additional uncer-8
tainty in the level of wind power generation. Instead of using com-9
mon risk measures, such as conditional value at risk (CVaR), this10
paper proposes the use of the second-order stochastic dominance11
constraints (SOSDCs) for risk management of wind producer’s12
bidding strategies. As benchmark selection is the major obstacle13
against applying SOSDCs, a novel optimization-based benchmark14
selection method is proposed. Case studies are carried out for an15
80 MW wind producer using the SOSDCs-based bidding model16
with the proposed benchmark selection method and the CVaR-17
based bidding model. Results demonstrate the superior flexibility18
of the SOSDCs in risk management. Moreover, the SOSDCs can19
effectively manage the negative tail of the profit distribution. Com-20
pared to the SOSDCs, the CVaR is more suitable for modeling risk21
rather than managing risk, as it does not use a profit target value22
but uses the (1 − α)-quantile of the profit distribution. As the23
negative tail is the best representative of risk in the problem under24
study, the SOSDCs with the proposed benchmark selection method25
are more suitable than the CVaR for risk management of a wind26
power producer’s bidding strategy.27

Index Terms—Bidding strategy, conditional value at risk28
(CVaR), electricity market, risk management, stochastic domi-29
nance, stochastic programming, wind energy.30

NOMENCLATURE31

The most important notations used throughout the paper are32

listed below for quick reference.

Q1

33

Indices and Sets34

t Index of time periods, running from 1 to NT .35

ω, ω′ Index of scenarios of a wind power producer’s bidding36

model, running from 1 to NΩ.37

ν, v′ Index of benchmark scenarios, running from 1 to Nv .38

Manuscript received October 2, 2018; revised January 19, 2019 and April
19, 2019; accepted June 11, 2019. This work was supported in part by the Ne-
braska Public Power District through the Nebraska Center for Energy Sciences
Research. Paper no. TSTE-00989-2018. (Corresponding author: Wei Qiao.)

The authors are with the Power and Energy Systems Laboratory, De-
partment of Electrical and Computer Engineering, University of Nebraska–
Lincoln, Lincoln, NE 68588-0511 USA (e-mail: m.kareem@huskers.unl.edu;
dxiao@huskers.unl.edu; wqiao3@unl.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSTE.2019.2927119

Decision Variables 39

WD
tω Power offered by a wind producer in the day-ahead 40

market for a time period t in a scenario ω. 41

η Auxiliary variable used to compute CVaR. 42

Sω Auxiliary continuous and non-negative variable. 43

Sωv Continuous variable measuring the shortfall of the 44

profit in a scenario ω below the benchmark scenario ν. 45

Random Variables 46

λD
tω Day-ahead market price in a time period t and a 47

scenario ω. 48

λr
tω Real-time market price in a time period t and a 49

scenario ω. 50

W ac
tω Actual wind power production in a time period t and 51

a scenario ω. 52

Other Variables 53

πω Expected profit of a wind power producer. 54

Constants and Parameters 55

dt Duration of a time period t. 56

prω Probability of occurrence of a scenario ω. 57

Wmax Installed capacity of a wind power producer. 58

α Per-unit confidence level. 59

β Risk-aversion parameter, ranging from 0 to 1. 60

kv, kv′ Prefixed value of the benchmark scenario ν or v′, 61

respectively. 62

τv, τv′ Probability of the benchmark scenario ν or v′, 63

respectively. 64

I. INTRODUCTION 65

D EREGULATION in the electricity sector led to the cre- 66

ation of competitive electricity markets, where electricity 67

is traded in the same way as other commodities. In a market 68

environment, participants are exposed to financial risks due to 69

uncertainty [1], where financial risk is defined as the possibility 70

that a participant’s financial outcomes deviate adversely from 71

what is expected [2]. In electricity markets, electricity prices 72

are characterized by excessive volatility due to electricity’s 73

special characteristics such as instantaneous delivery, limited 74

storability, inelastic short-term demand, and compliance with 75

Kirchhoff’s laws. Statistical data indicates that in the U.S., the 76
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average annual volatility of electricity price is 359.8%; while 77

those of natural gas and petroleum, financial assets, metals,78

agriculture, and meat are just 48.5%, 37.8%, 21.8%, 49.1%, and79

42.6%, respectively [1]. Hence, electricity market participants80

are facing a high price risk due to the high volatility of electricity81

price in the market. In the U.S., some market operators, such as82

Southwest Power Pool (SPP), allow wind power to participate83

in the electricity pool. In such a case, wind power producers84

must fulfill their commitments regardless any deviations in the85

real-time production caused by the uncertainty of wind energy,86

which is another factor causing financial risks to wind power87

producers in the electricity market.88

A variety of studies have been carried out to mitigate the89

risk of bidding wind power in electricity markets caused by90

the uncertainty in wind energy. For example, combining wind91

energy with energy storage to cope with uncertainty has been92

studied [3]–[7], but may not be a cost-effective solution [8].93

Combining wind and thermal energies in one bidding strategy94

to transfer risk from wind to thermal was discussed in [9].95

In [10]–[13], stochastic programming was used to generate96

optimal bidding strategies for wind power producers to hedge97

against uncertainties when participating in the day-ahead or98

adjustment market. The stochastic programming problem is99

commonly formulated to maximize/minimize the expected value100

of the objective function’s distribution (or portfolio). However,101

this approach does not ensure that the impact of unacceptable102

scenarios in the probability distribution of the optimal objective103

function is mitigated.104

Financial risk management based on financial theories can be105

a solution to hedge against these unacceptable scenarios of the106

optimal objective function.107

Financial risk management can be defined as a procedure of108

shaping the optimal objective function’s distribution. Most, if not109

all, existing works in the literature managed the risks of bidding110

strategies using common risk measures such as variance [14],111

value at risk (VaR) [15], and conditional value at risk (CVaR) [2],112

[11], [16]–[18]. Variance does not distinguish between positive113

and negative deviations from the expected value. Hence, it is114

not compatible with the definition of risk in this paper, which115

focuses only on negative deviations. VaR is a widely used risk116

measure but does not fulfill the subadditivity axiom. Therefore,117

it is not a coherent risk measure. On the other hand, CVaR is118

a coherent risk measure with preferable mathematical charac-119

teristics in optimization [19] and, therefore, is most commonly120

used in electricity market applications. Stochastic dominance,121

rather than a risk measure, is a mathematical approach used in122

financial risk management [20], [21]. In that approach, stochastic123

dominance constraints were added to the set of constraints of124

the problem to force the optimal distribution of the objective125

function to outperform a predefined benchmark distribution (or126

simply called benchmark), which was selected and accepted127

by the risk manager. Using stochastic dominance constraints128

provides more flexibility for the risk manager to obtain an129

optimal portfolio (or objective function distribution) based on130

the risk preferences, which may be vital in some applications.131

However, compared to risk measures, it is not an easy task132

to select an appropriate benchmark for stochastic dominance133

constraints to ensure that the resulting decision-making model 134

is feasible. 135

In the literature, limited research has been done on the use 136

of stochastic dominance constraints for the risk management 137

in power system planning and operation or electricity market 138

applications. To the best of the authors’ knowledge, stochastic 139

dominance constraints have been used in the work to determine 140

an electricity retailer’s optimal participation in forward and 141

short-term markets to meet its demands [22], [23], the opti- 142

mal design and operation of a power system with distributed 143

generation with uncertainties [24], [25], the optimal generation 144

capacity expansion with uncertainty [26], the optimal portfolios 145

for electric utility companies [27], [28], the optimal trading 146

strategy for a virtual power plant (a cluster of diverse distributed 147

energy resources) in bilateral contracts and electricity markets, 148

the optimal self-scheduling of a large consumer considering 149

market uncertainty [29], and the optimal bidding strategy for 150

a wind power producer in the day-ahead market [30]. However, 151

none of the existing work discussed how the benchmarks were 152

selected, which is a major obstacle to implementing stochastic 153

dominance constraints in risk management. 154

Motivated by the authors’ preliminary study in [30], this 155

paper proposes the use of the second-order stochastic domi- 156

nance constraints (SOSDCs) for the risk management of a wind 157

power producer’s bidding model. The wind power producer 158

participates in the day-ahead and balancing (real-time) markets 159

and faces three statistically independent uncertainties, which are 160

wind power generation, day-ahead clearing price, and real-time 161

clearing price. The uncertainties are represented by scenarios 162

in the stochastic-programming-based bidding model. The main 163

contributions of this paper include the following: 164

1) Developed a stochastic bidding model using the SOSDCs 165

for the risk management to generate the optimal bidding 166

strategy for a wind power producer. 167

2) Proposed a novel optimization-based benchmark selec- 168

tion method to fulfill the risk manager’s preferences and 169

ensure the feasibility of the bidding model. The proposed 170

method is applicable not only to the bidding problem under 171

study but to any stochastic programming problem with 172

SOSDCs. 173

3) Conducted a comparative study between the CVaR and 174

SOSDCs for managing the risks of a wind power pro- 175

ducer’s bidding model to demonstrate the superior perfor- 176

mance and more flexibility of the SOSDCs over the CVaR 177

in managing the negative tail of the profit distribution. 178

The rest of this paper is organized as follows. Section II 179

presents the market framework and the risk-neutral bidding 180

model for a wind power producer, discusses different risk mea- 181

sures and risk management strategies, and presents the bidding 182

model using CVaR to manage the risk. Section III presents the 183

proposed bidding model for a wind power producer using the 184

SOSDCs for the risk management and proposes an optimization- 185

based benchmark selection method for the SOSDCs. Case stud- 186

ies for an 80 MW wind farm are carried out in Section IV 187

to evaluate and compare the bidding models using CVaR and 188

SOSDCs for the risk management. Section V summarizes the 189

paper by concluding remarks. 190
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Fig. 1. Clearing sequence for the electricity market consisting of a day-ahead
and a balancing markets.

II. MARKET FRAMEWORK AND TRADITIONAL BIDDING191

MODELS FOR A WIND POWER PRODUCER192

A. Electricity Market Framework (Pool-Based)193

A pool-based electricity market consisting of a day-ahead194

market and a balancing market is considered. The clearing195

sequence of the electricity market is shown in Fig. 1 [31]. The196

day-ahead market of Day d closes at 10:00 a.m. on Day d−1. The197

wind producers have to perform 14–38 hours ahead forecasts of198

their production from 00:00 to 24:00 of Day d to generate their199

hourly bidding strategies for Day d no later than 10:00 a.m. on200

Day d−1. The balancing market is cleared hourly on Day d to201

provide energy to cover both positive and negative generation202

deviations from commitment. For each hour, producers are paid203

for the cleared energy volume at the day-ahead clearing price.204

Moreover, in the real-time market, producers are paid for positive205

energy deviations and will pay for negative energy deviations at206

the real-time price.207

In such a market framework, the objective of a wind power208

producer is to maximize the expected profit from trading in209

the day-ahead and balancing markets while managing the risks210

caused by the uncertainties.211

B. Risk-Neutral Bidding Model for Wind Power Producer212

The bidding problem of a wind power producer is subjected213

to three statistically independent sources of uncertainties: 1)214

wind generation, 2) day-ahead market clearing price, and 3)215

balancing market clearing price. These uncertainties are mod-216

eled as stochastic processes by a set of scenarios, where each217

scenario has a value and a probability of occurrence, and the218

bidding problem is modelled using the stochastic programming219

approach. The methods of scenario generation in [31] and sce-220

nario reduction in [32] are used to generate scenarios and reduce221

the number of generated scenarios for each random variable that222

represents a source of uncertainty.223

Equations (1)–(4) represent the mathematical model for a224

wind power producer’s risk-neutral bidding problem. It aims225

to maximize the expected profit of the wind power producer that226

participates in the competitive day-ahead and balancing markets227

without managing the risk.228

Max
WD

tω

NΩ∑

ω=1

prω.

NT∑

t=1

[
λD
tωW

D
tω + λr

tω

(
W ac

tω −WD
tω

)]
dt (1)

Subject to:

0 ≤ WD
tω ≤ Wmax , ∀t, ω (2)

(
λD
tω − λD

tω′
) (

WD
tω −WD

tω′
) ≥ 0, ∀t, ω, ω′ (3)

WD
tω = WD

tω′ , ∀t, ω, ω′ : λD
tω = λD

tω′ (4)

Fig. 2. Cumulative distribution functions (CDFs) of two profit distributions
with the same shortfall probability but different tail shapes.

where the expected profit in the objective function (1) is equal 229

to the revenue from the day-ahead market plus the revenue 230

from the balancing market minus the cost for negative energy 231

deviations in the balancing market. Constraint (2) limits the 232

wind energy capacity to be traded in the day-ahead market to 233

the maximum available installed capacity of the wind power 234

producer. Constraint (3) assures a nondecreasing bidding curve. 235

Constraint (4) constitutes the nonanticipativity conditions of the 236

first stage decisions in the day-ahead market. 237

C. Risk Management 238

In stochastic programming problems involving random vari- 239

ables, it is usual to optimize the expected values of the objective 240

functions [31]. The main disadvantage of this approach is the 241

ignorance of other important features describing the objective 242

function’s distribution, such as maximum, minimum, etc. To 243

overcome this disadvantage, risk management should be in- 244

cluded in the stochastic programming models to ensure that 245

the risk of the selected objective function distribution does not 246

exceed a certain limit. 247

The most common way to apply risk management in stochas- 248

tic programming is to include a risk measure (or risk functional) 249

in the problem formulation, as in the mean-risk approach (also 250

called Markowitz approach) discussed in [33], [34]. Commonly 251

used risk measures include variance, shortfall probability, ex- 252

pected shortage, VaR, and CVaR. Variance penalizes all of the 253

scenarios with the values different from the expected value even 254

if they are higher than the expected value. Shortfall probability 255

(i.e., the probability of the scenarios beyond a prefixed value) 256

overcomes this disadvantage by penalizing the scenarios beyond 257

a prefixed value only, but cannot detect/manage the shape of the 258

objective’s distribution beyond this prefixed value, as shown 259

in Fig. 2. Expected shortage (i.e., the expected value of the 260

scenarios beyond a prefixed value) overcomes this drawback 261

by considering the expectation of the tail of the objective’s 262
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distribution, but is not a coherent risk measure due to the use of a263

prefixed value. VaR solves the problem of using a prefixed value264

by replacing it with a decision variable in the optimization prob-265

lem. However, it cannot detect the tail shape of the objective’s266

distribution as what the shortfall probability does. Moreover,267

VaR is not subadditive, and so not coherent. CVaR is the most268

commonly used risk measure in electricity market applications269

due to its major mathematical characteristics and performance270

features discussed in [19]. It can be expressed using a linear271

formulation, without the need for binary variables. Moreover, it272

is able to quantify the tail shape and is a coherent risk measure.273

For a given α in the range of [0%, 100%], the CVaR is equal to274

the expected value of the scenarios with the profits smaller than275

the (1− α)-quantile of the profit distribution.276

D. Bidding Model Using CVaR for Risk Management277

The risk management using CVaR can be implemented in the278

risk-neutral bidding model (1)–(4) of the wind power producer,279

and the resulting bidding model is expressed by (5)–(10).280

Max
WD

tω, η, sω
(1− β)

(
NΩ∑

ω=1

prω.

NT∑

t=1

[
λD
tωW

D
tω

+ λr
tω

(
W ac

tω −WD
tω

)]
dt

)

+ β

(
η − 1

1− α

NΩ∑

ω=1

prω.Sω

)
(5)

Subject to:

0 ≤ WD
tω ≤ Wmax , ∀t, ω (6)

(
λD
tω − λD

tω′
) (

WD
tω −WD

tω′
) ≥ 0, ∀t, ω, ω′ (7)

WD
tω = WD

tω′ , ∀t, ω, ω′ : λD
tω = λD

tω′ (8)

η −
(

NT∑

t=1

[λD
tωW

D
tω + λr

tω

(
W ac

tω −WD
tω

)
]dt

)

≤ sω, ∀ ω (9)

sω ≥ 0, ∀ω (10)

where CV aR = (η − 1
1−α

∑NΩ

ω=1 prω.Sω) is added to the ob-281

jective function (5) to manage the risk; the risk aversion parame-282

ter β, ranging from 0 to 1, represents the risk manager’s appetite283

to take risk and controls the tradeoff between risk and expected284

profit; and the constraints (9) and (10) are added to linearize the285

CVaR term in the objective function (5) [35].286

III. STOCHASTIC-DOMINANCE-BASED RISK MANAGEMENT287

Although the CDF of a random variable provides complete288

information about its distribution, it may be too complicated289

to use it for risk management. That is why simple risk mea-290

sures are commonly used to measure the risk levels of random291

variables. Recently, the stochastic dominance concept was pro-292

posed for risk management by adding stochastic dominance293

constraints to the set of constraints of a stochastic program- 294

ming problem. The constraints impose a benchmark distribution 295

that changes the feasible region of the optimization problem 296

[20], [21]. All undesirable solutions are excluded from the 297

modified feasible region, and the optimal portfolio obtained by 298

solving the optimization problem will outperform the imposed 299

benchmark defined according to the risk manager’s preference. 300

Stochastic dominance constraints can be constructed in differ- 301

ent orders; while the most commonly used are the first and 302

second orders. The first-order stochastic dominance constraint 303

makes the optimization problem non-convex; while the prob- 304

lem with the SOSDCs is convex. In both cases, a benchmark 305

should be chosen carefully to avoid infeasibility of the problem. 306

To the best of the authors’ knowledge, the benchmarks used 307

in the stochastic-dominance-based risk management models in 308

the literature were usually selected heuristically; no work has 309

presented a benchmark selection method or provided guidelines 310

on how to select the benchmark. This obstacle is resolved in 311

this paper by a novel optimization-based benchmark selection 312

method that is applicable to any stochastic programming prob- 313

lem with SOSDCs. 314

A. Bidding Model Using SOSDCs for Risk Management 315

By adding the SOSDCs (15)–(17) to the risk-neutral bidding 316

model (1)–(4), a bidding model with the SOSDC-based risk 317

management is obtained as (11)–(17). 318

Max
WD

tω, Sωv

NΩ∑

ω=1

prω

.

NT∑

t=1

[
λD
tωW

D
tω + λr

tω

(
W ac

tω −WD
tω

)]
dt (11)

Subject to:

0 ≤ WD
tω ≤ Wmax , ∀t, ω (12)

(
λD
tω − λD

tω′
) (

WD
tω −WD

tω′
) ≥ 0, ∀t, ω, ω′ (13)

WD
tω = WD

tω′ , ∀t, ω, ω′ : λD
tω = λD

tω′ (14)

kv −
(

NT∑

t=1

[
λD
tωW

D
tω + λr

tω

(
W ac

tω −WD
tω

)]
dt

)

≤ Sωv, ∀ω, v (15)

NΩ∑

ω=1

prω.Sωv ≤
Nν∑

v′=1

τv′ .max (kv − kv′ , 0), ∀ v (16)

Sωv ≥ 0, ∀ ω, v (17)

319

The benchmark is imposed in the model via the added 320

SOSDCs (15)–(17). These constraints ensure that the optimal 321

objective function’s distribution second-order stochastically 322

dominates the predetermined benchmark distribution. The 323

benchmark can have any number of scenariosNv . Each scenario 324

has a probability τν (or τν ′) and a prefixed value kv (or kν ′ ). The 325

added SOSDCs and the imposed benchmark will change the 326
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Fig. 3. CDFs of the optimal objective functions’ distributions of the risk
neutral problem (1)–(4) and the risk-averse problem (5)–(10) with β = 1 and
α = 99% and the benchmark’s effective feasible region.

bidding problem’s feasible region to exclude the solutions that327

exceed the risk limits defined by the risk manager. Hence, the328

optimal profit distribution obtained by solving the problem (11)–329

(17) will outperform (dominate) the predefined benchmark.330

B. Proposed Benchmark Selection Method331

Since the imposed benchmark changes the feasible region332

of the bidding problem, the bidding model (11)–(17) will be333

infeasible if the benchmark is not properly selected. To solve334

this problem, a novel method is proposed in this section to335

assist the risk manager in selecting the benchmark to fulfill the336

risk preference while keeping the bidding problem feasible. By337

solving the risk neutral problem (1)–(4), the optimal values of338

the decision variables are obtained. By substituting the optimal339

values of the decision variables in each scenario of the problem340

with a predetermined probability, the CDF of the optimal profit341

distribution of the risk neutral problem (1)–(4) can be obtained,342

as shown in Fig. 3 for a certain hour. Similarly, the CDF of343

the problem (5)–(10), which uses the CVaR with β = 1 and344

α = 99% to manage the risk, can be obtained for the same hour.345

Then, a yellow rectangular region in Fig. 3 is defined as follows.346

It ranges from 0 to 1 on the vertical axis. The left-hand-side347

border of the region is the value of the worst scenario of the348

optimal profit distribution of the risk neutral problem, which349

only maximizes the expected profit and totally ignores the risk.350

The right-hand-side border of the region is the value of the worst351

scenario of the optimal profit distribution obtained by solving352

the problem (5)–(10), which minimizes the risk regardless the353

expected profit. The left- and right-hand-side boarders of the354

region represent two extremes in the risk management. As any355

benchmark with a CDF lying in this region will ensure that356

the problem (11)–(17) remains feasible, the region is called the357

benchmark’s effective feasible region. Finally, the benchmark358

can be selected within the effective feasible region according to359

the number of scenarios and their probabilities determined by360

the risk manager’s preference.361

A benchmark can have different numbers of scenarios.362

Table I lists the parameters and Fig. 4 shows the CDFs of363

TABLE I
BENCHMARKS WITH DIFFERENT NUMBERS OF SCENARIOS (X: LIMIT OF THE

PROFIT OF THE WORST SCENARIO; AND Y: NEGATIVE TAIL

PROBABILITY LIMIT)

Fig. 4. Examples for CDFs of different benchmarks listed in Table I.

three benchmarks with different numbers of scenarios, where 364

the Nv-scenario benchmark is the general case. Any scenario 365

ν (ν = 1, . . . , Nv) has two parameters: probability τv and 366

prefixed value kν . The CDF of an Nv-scenario benchmark has a 367

nondecreasing staircase shape within the benchmark’s effective 368

feasible region. If part or all of the benchmark’s CDF is outside 369

the effective feasible region, the optimization problem (11)–(17) 370

may be infeasible. For instance, any one-scenario benchmark 371

with a positive value for k1 will make the problem infeasible. 372

For the one-scenario benchmark, the prefixed value of the single 373

scenario, k1, defines the prefixed minimum profit limit X. For a 374

two-scenario benchmark, the first scenario can take any prefixed 375

value k1 = X within the benchmark’s effective feasible region, 376

but the second scenario’s prefixed value is zero (k2 = 0) to put 377

a limit Y on the probability of the negative tail of the profit 378

distribution. 379

The selection of the number of benchmark scenarios Nv and 380

their probabilities τv and prefixed values kν(ν = 1, . . . , Nv) 381

depends on the risk manager’s preference. A benchmark with 382

more scenarios provides more flexible and, thus, better risk 383

management. However, the computational cost of solving the 384

problem (11)–(17) increases with the number of scenarios of 385

the benchmark, because each scenario in the benchmark imposes 386

2NΩ + 1 constraints, where NΩ is the number of scenarios of 387

the stochastic programming problem. As a tradeoff between risk 388

management flexibility and computational cost, a benchmark 389

with 1–3 scenarios would be enough for the wind power bidding 390
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problem studied in this work. As demonstrated by the case391

studies in Section IV, the risk management performance of392

the SOSDC-based bidding model using benchmarks with 1–3393

scenarios outperforms that of the mean-CVaR model.394

IV. CASE STUDY VALIDATION395

Case studies are carried out for a wind farm in Nebraska,396

United States using the SOSDC-based bidding model (11)–397

(17) with the proposed optimization-based benchmark selection398

method. The results are compared with those of the CVaR-based399

bidding model (5)–(10) to show the advantages of using the400

SOSDCs for the risk management of the wind power producer’s401

bidding strategy in the short-term electricity market.402

A. Simulation Setup403

The wind farm has a total installed capacity of 80 MW. The404

uncertain variables of the problem include wind power gener-405

ation, day-ahead price, and real-time price. They are modeled406

as statistically independent discrete random processes using the407

seasonal autoregressive integrated moving average (ARIMA)408

model. First, the seasonal ARIMA model [31] is applied to409

generate 500 scenarios by considering daily seasonality for410

each uncertain variable using the historical data of the vari-411

able obtained from the Southwest Power Pool (SPP). Then,412

the forward-selection-based scenario reduction technique [32]413

is applied to reduce the scenario numbers of the wind power414

generation, day-ahead price, and real-time price to 5. Therefore,415

totally 125 scenarios are generated for the bidding models. The416

bidding models of the wind producer are coded in MATLAB and417

solved using Gurobi Optimizer on a Windows desktop computer418

with a 3.2 GHz Core i5 CPU and 3 GB RAM. To obtain the419

day-ahead bidding curves for the wind power producer, the420

bidding models are solved hourly for the 24 hours of the next day.421

The execution times of the risk-neutral and mean-CVaR models422

for the cases studied are approximately 3.1 and 3.3 seconds, re-423

spectively. Meanwhile, the execution times of the SOSDC-based424

bidding model with one-, two-, and four-scenario benchmarks425

are approximately 4.1, 4.5, and 5.3 seconds, respectively. All426

of these execution times are acceptable for a bidding problem427

running on an hourly basis.428

B. Benchmark’s Effective Feasible Region of the429

SOSDC-Based Bidding Model430

The proposed benchmark selection method provides a general431

and systematic approach to ensure the feasibility of the bidding432

model. It should be mentioned that the benchmark’s effective433

feasible region illustrated in Fig. 3 or 4 is not fixed for different434

hours but depends on the values of scenarios of the problem’s435

input random variables. The wind power bidding problem has436

three input random variables, among which the day-ahead and437

real-time market clearing prices can be positive or negative while438

the wind power production is always nonnegative. To illustrate439

how positive/negative values of the random variables affect440

the effective feasible region, four different cases listed in Table II441

are considered and the corresponding effective feasible regions442

TABLE II
LIST OF CASES FOR ILLUSTRATING THE EFFECT OF POSITIVE/NEGATIVE

VALUES OF THE SCENARIOS OF DAY-AHEAD AND REAL-TIME MARKET PRICES

ON THE BENCHMARK’S EFFECTIVE FEASIBLE REGION

Fig. 5. The benchmark’s effective feasible regions for the four different cases
listed in Table II.

are compared in Fig. 5. Both the cases A and D have a rectangular 443

effective feasible region that is bounded by the worst scenarios of 444

the two extreme cases of risk management, i.e., the risk-neutral 445

and the most risk-averse settings. However, the effective feasible 446

region of Case B or C is a vertical line, which indicates that the 447

worst scenarios of the two extreme cases of risk management 448

are equivalent. This happens because the price in one market is 449

always higher than the price in the other market. For example, in 450

Case B, the real-time price is always higher than the day-ahead 451

price. Hence, regardless of the risk-aversion level, the rational 452

decision is to bid all wind generation in the market with the 453

higher price. 454

The scenarios of market prices usually have nonnegative val- 455

ues. Hence, without loss of generality, only nonnegative values 456

are considered for the scenarios of market prices in the following 457

discussions. 458

C. Bidding Model Using SOSDCs for Risk Management 459

Basically, a one-scenario benchmark is a vertical line, which 460

forces the profit distribution obtained from the bidding model 461

not to exceed its prefixed value, as illustrated in Fig. 6 for 462

three different one-scenario benchmarks (dotted lines) used for 463

the same hour. Each benchmark and the corresponding profit 464

distribution in solid line are in the same color. Clearly, the 465

worst profit scenario cannot exceed the prefixed value of the 466

benchmark in each case. Although most of the aforementioned 467
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Fig. 6. CDFs of a one-hour profit obtained from the SOSDC-based bidding
model using three different one-scenario benchmarks. The yellow rectangle
defines the benchmark’s effective feasible region.

Fig. 7. CDFs of a one-hour profit obtained from the SOSDC-based bidding
model using three different two-scenario benchmarks. The yellow rectangle
defines the benchmark’s effective feasible region.

risk measures can control the probability of the defined tail468

(i.e., risk), none of them can manage the worst profit scenario469

directly as the SOSDCs with a one-scenario benchmark does.470

The SOSDCs with a two-scenario benchmark can manage471

the worst profit scenario and the probability of the negative tail472

simultaneously and directly, as shown in Fig. 7. All of the three473

profit distributions are on the right side of the corresponding474

benchmarks, where each benchmark’s horizontal line, defined475

by the Y value, puts a probability limit for the negative tail that476

the profit distribution cannot go above; while each benchmark’s477

vertical line, defined by the X value, puts a limit that the worst478

scenario cannot exceed. Fig. 8 compares the CDF of the one-479

hour profit obtained from the bidding model with the SOSDCs480

using a four-scenario benchmark with those using one- and two-481

scenario benchmarks. Obviously, using a benchmark with more482

parameters or scenarios provides more flexibility to manage the483

negative tail shape.484

Fig. 8. CDFs of a one-hour profit obtained from the SOSDC-based bidding
model using one-scenario (blue), two-scenario (red), and four-scenario (green)
benchmarks. The yellow rectangle defines the benchmark’s effective feasible
region.

D. Comparison of CVaR and SOSDCs for Risk Management 485

If the mean-CVaR approach is used to manage risk, the objec- 486

tive function is formulated to maximize the expected profit while 487

minimizing the risk defined by the expectation of the predefined 488

(1− α)-quantile tail of the profit distribution, where α ranges 489

from 0% to 100%. The trade-off between the maximization and 490

minimization is controlled by the risk-aversion parameter β, 491

which ranges from 0 to 1. On the other hand, if the SOSDCs are 492

used for risk management, they impose a predefined benchmark 493

to modify the problem’s feasible region. The benchmark can 494

be imposed to flexibly modify the problem’s feasible region 495

by changing its corner points. In this way, any point in the 496

problem’s feasible region can be chosen to be the best corner 497

point (the optimal solution) in the modified feasible region of 498

the problem. Such flexibility is not achievable by managing 499

the values of the risk management parameters α and β in the 500

mean-CVaR approach. Risk management can be defined as a 501

procedure for shaping a portfolio distribution. Thus, the supe- 502

rior flexibility of the SOSDC approach, over the mean-CVaR 503

approach, in selecting the optimal distribution of the objective 504

function, makes it more suitable for the risk management of 505

the bidding problem. This superior flexibility of the SOSDC 506

approach can be demonstrated via comparing the results of 507

the two approaches for the bidding problem with different risk 508

management preferences that span the feasible ranges of the risk 509

management parameters. First, the mean-CVaR with different 510

combinations of α= [0%:1%:99%] and β = [0:0.01:1] are used 511

in the bidding model (5)–(10) to manage the risk of the one-hour 512

profit distribution of the wind power producer. Out of the 10,100 513

different cases tested, only 439 different optimal solutions are 514

obtained and plotted in Fig. 9, indicating that many cases with 515

differentα andβ values have the same optimal solution. A single 516

CDF of the optimal profit obtained from the SOSDC-based 517

bidding model is also plotted in Fig. 9 and obviously cannot 518

be represented by any of the 439 CDFs of the optimal profit 519



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Fig. 9. CDFs of a one-hour profit obtained from the CVaR-based bidding
model using different combinations of α and β, and a CDF obtained from the
SOSDC-based bidding model for the same hour.

Fig. 10. CDFs of a one-hour profit obtained from the SOSDC-based bidding
model with one-scenario benchmark for different values of X = [−2685:1:0].

obtained from the mean-CVaR-based bidding model. Then, the520

SOSDC-based bidding model (11)–(17), with a one-scenario521

benchmark and different values of X = [−2685:1:0], is used522

to obtain the optimal profit distributions of the wind power pro-523

ducer for the same hour. The resulting CDFs of the optimal profit524

are plotted in Fig. 10, where 2686 different optimal solutions525

are obtained from the 2686 cases tested. Fig. 11 shows the effect526

of the prefixed value X of the one-scenario benchmark on the527

expected value of the optimal profit distribution obtained from528

the SOSDC-based bidding model. As expected, an increase in529

the risk aversion level (i.e., the value of X) leads to a reduction530

in the expected profit. Although the same trend is observed in531

the result of the mean-CVaR bidding model, the SOSDC-based532

model can reach the expected profits that cannot be reached by533

the mean-CVaR model because the orange dots are covered by534

the blue dots.535

The results in Figs. 9, 10, and 11 show that the SOSDC-536

based bidding model can offer more optimal solutions than537

Fig. 11. Expected value of the optimal profit distribution (i.e., expected profit)
versus prefixed value X of the imposed one-scenario benchmark, where the blue
dots labeled as “SOSDC” represent the profit distributions in Fig. 10 and the
orange dots labeled as “CVaR and SOSDC” represent the profit distributions in
Fig. 10 that are identical to those in Fig. 9.

the mean-CVaR-based bidding model even with less number 538

of cases tested. In other words, the SOSDC-based bidding 539

model can offer optimal solutions that cannot be offered by the 540

mean-CVaR-based bidding model. Similar results were obtained 541

for other hours of the bidding problem under study. However, it 542

is important to mention that the mean-CVaR and SOSDC-based 543

models would provide identical results at each of the two extreme 544

cases of risk management, i.e., the risk-neutral and the most 545

risk-averse settings. 546

In the wind power bidding problem under study, only the 547

financial gain/loss from the electricity market participation is 548

considered in the objective function; while the unit generation 549

cost is ignored because it is either zero or constant through a 550

power purchase agreement and does not depend on the market. 551

In such a case, the scenarios with negative profit values (i.e., the 552

negative tail) are considered as the risk. When these negative 553

profit values and their probabilities are high, the portfolio’s risk 554

is high. 555

The mean-CVaR approach, which manages the (1− α)- 556

quantile tail, cannot manage the negative tail directly, as shown 557

in Fig. 12, which shows the CDFs of the optimal hourly profits 558

for 24 hours of a day were obtained from the mean-CVaR-based 559

bidding model withα= 95% and β= 0.2. Many CDFs still have 560

large negative tails, which means high risks, as the (1− α)- 561

quantile tails depend on other parameters of the problem, such as 562

the probabilities and values of the uncertain variables’ scenarios, 563

which change from one hour to another. To solve this problem, 564

different values of α and β should be used for different hours 565

to manage the negative tail instead of the (1− α)-quantile 566

tail. On the contrary, the SOSDCs with a fixed benchmark can 567

be applied for all hours to manage the negative tails directly 568

regardless of other parameters of the problem. For the same 569

24 hours of Fig. 12, the bidding model using the SOSDCs with 570
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Fig. 12. CDFs of the optimal hourly profits for 24 hours of a day obtained
from the CVaR-based bidding model with α = 95% and β = 0.2.

Fig. 13. CDFs of the optimal hourly profits for 24 hours of a day obtained
from the SOSDC-based bidding model using a two-scenario benchmark.

a two-scenario benchmark is solved to obtain the 24 CDFs of571

the optimal profits, as shown in Fig. 13. Compared to Fig. 12, it572

is clear that the negative tails of all the CDFs in the red zone of573

Fig. 13 are managed directly and effectively to be much smaller574

and within the benchmark’s limits. These results prove that575

the proposed SOSDCs approach provides superior performance576

over the mean-CVaR approach in managing the negative tail577

shape directly. Thus, if the risk manager considers the negative578

tail (loss) to be the best representation of the risk in the problem,579

the SOSDC approach should be the first choice for the risk580

management.581

V. CONCLUSION582

In this paper, a stochastic optimization model using the SOS-583

DCs to manage the risk was proposed to generate the optimal bid-584

ding strategy for a wind power producer in the day-ahead market;585

and a novel optimization-based benchmark selection method 586

was proposed to overcome the main obstacle against using the 587

SOSDCs for risk management. Case studies were carried out for 588

an 80 MW wind farm using the proposed SOSDC-based bidding 589

model and the CVaR-based bidding model as CVaR is the most 590

commonly used risk measure in electricity market applications. 591

The effects of different parameters of the CVaR and SOSDC 592

approaches were studied. Compared to the CVaR approach that 593

only uses two parameters α and β to represent the risk prefer- 594

ence, the proposed SOSDC-based risk management approach 595

provided more flexibility in representing the risk preference of 596

the decision maker via defining a benchmark distribution with 597

more parameters and is more efficient in managing the negative 598

tail of the profit distribution, which is the best representation 599

of the risk for the bidding problem under study. As risk man- 600

agement is a procedure of shaping a portfolio distribution, the 601

SOSDC approach could offer optimal profit distributions that 602

could not be offered by the CVaR approach, as demonstrated in 603

the case studies. Compared to the SOSDCs, the CVaR is more 604

suitable for measuring risk rather than managing risk, as it does 605

not use a profit target value but the (1− α)-quantile of the profit 606

distribution. 607
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