

Lead Halide Perovskites: from Nanoparticles to Devices

Background

Perovskites are materials with chemical formulas of the form ABX₃, where A and B are cationic and X is an anion. Hybrid lead halide perovskites (where CH₃NH₃Pbl₃, methylammonium lead iodide) is the most notable member of the family, have been known for decades, but several recent experiments have started a "perovskite fever" thanks to the dramatic increase in perovskite solar conversion efficiency observed over the course of only a few years.

To capitalize on this, we investigated lead halide perovskites with the intention of further improving the already excellent qualities of perovskite solar cells, particularly in the areas of energy absorption, quantum yield, carrier mobility and lifetime, and diffusion length. We aimed to synthesize members of two lead halide perovskite families - CsPbX₃ and CH₃NH₃PbX₃ - and examine their performance in the areas above given their prominence in the field of solar energy.

Fig. 1. Crystal structures of (A) generic perovskites such as $CsPbX_3$ and (B) methylammonium lead iodide (MAPbI₃, $CH_3NH_3PbI_3$). One cation is at the center of each cube, and another is found at the center of each octahedron. The corners of the octahedra are anions.

Fig. 2. Transmission electron microscopy image of CsPbBr₃ quantum dots. Scale bar is 50nm.

Comp

CsPbC **CsPbCl CsPbB** CsPbBr **CsPbl**₃

10⁻² 0.01

Jacob D. Teeter, Takashi Komesu, Mikhail Shekhirev, Xin Huang, Tula R. Paudel, John Goza, Alexey Lipatov, Makhsud Saidaminov, Osman M. Bakr, Evgeny Y. Tsymbal, Axel Enders, Alexander Sinitskii, Peter A. Dowben

CsPbX₃ Nanoparticles

Fig. 3. Synthesis, photoluminescence, and structure (circled) of CsPbX₃ nanoparticles. High quantum yields lead to highly visible emission.

ound	Photoluminescence (PL) peak position (nm)	E _g calculated from PL (eV)	
l ₃	410	3.02	400 45
I _{1.5} Br _{1.5}	458	2.70	Wa
r ₃	516	2.40	Fig. 4. Fluorim nanoparticles.
$r_{1.5}I_{1.5}$	595	2.08	
5	688	1.80	

Fig. 5. Synthesis of $CH_3NH_3PbBr_3$ crystals, with callout of large crystals.

Callout: Crystalline CH₃NH₃PbX₃ exhibits charge transport efficiency that exceeds that of thin-film materials in mobility, lifetime, and diffusion length.

- *Chem. Educ.* **2017**, *94*, 8, 1150-1156.

The University of Nebraska-Lincoln is an equal opportunity educator and employer.

CH₃NH₃PbX₃ Devices

luorimetric measurements of CsPbX₃

Methods

Synthesis of CsPbX₃ nanoparticles: Under an N₂ atmosphere, 15 mL of ODE, 3 mL of oleylamine, 1.5 mL of oleic acid and 0.54 mmol of PbX₂ should be added to a three-neck flask. The mixture should be degassed at 100°C for 10 minutes, mixed at 100°C for 30 minutes (until PbX₂ dissolves - 150°C and 1 mL of trioctylphosphine are needed to dissolve PbCl₂) and then brought to desired temperature (typically 170°C). 0.55 mL of Csoleate should be quickly injected into the PbX₂ solution via glass syringe through a septum. After five seconds, the three-neck flask should be cooled down by the ice-water bath. Centrifugation can extract the nanoparticles, (5000 rpm, 5 min) which should then be redissolved in 8 mL of hexane. In the case of CsPbCl₃ and CsPbBr₃, 10 mL of acetone could be added to facilitate the precipitation. **<u>Crystallization of CH₃NH₃PbBr₃**</u>: PbBr₃ and CH₃NH₃Br (1:1, 0.2)

M) should be dissolved in N,N-dimethylformamide. CH₃NH₃PbBr₃ single crystals should grow along with the slow diffusion of the vapor of the anti-solvent dichloromethane (DCM) in to the solution.

<u>Crystallization of CH₃NH₃Pbl₃</u>. The same technique and antisolvent for crystallizing CH₃NH₃PbBr₃ applies. Pbl₂ and CH₃NH₃I $(1:3 by molar, 0.5 M Pbl_2)$ should be dissolved in gammabutyrolactone.

Summary

Simply-synthesized CsPbX₃ nanoparticles exhibit fluorescent quantum yields up to 90%, and their emission is in visible range of spectrum with a narrow band width. The emission wavelength can be modified by tuning both size and composition of the nanoparticles, which is most easily done through the choice of halide. This, in turn, can be accomplished prior to synthesis through precursor mixture or afterwards through stoichiometric mixture of nanoparticle solutions. This facile yet versatile means of control makes them desirable for absorbing energy in solar cells, as the wide range of wavelengths covered efficiently captures a broad spectrum of solar output.

CH₃NH₃PbX₃ perovskites performed exceptionally well, even relative to the highest in the efficiency competition. They exhibited electron mobilities up to 115 cm²/Vs, a diffusion distance of up to $17\mu m$, and carrier lifetimes approaching 22ns, which all contribute heavily to greater efficiency.

References

1) Shekhirev, M.; Goza, J.; Teeter, J.D.; Lipatov, A.; Sinitskii, A. Synthesis of cesium lead halide perovskite quantum dots. J.

2) Komesu, T.; Huang, X.; Paudel, T.R.; Losovyj, Y.B.; Zhang, X.; Schwier, E.F.; Kojima, Y.; Zheng, M.; Iwasawa, H.; Shimada, K.; Saidaminov, M.I.; Shi, D.; Abdelhady, A.L.; Bakr, O.M.; Dong, S.; Tsymbal, E.Y.; Dowben, P.A. Surface electronic structure of hybrid organo lead bromide perovskite single crystals. J. Phys. Chem. C. 2016, 120, 21710–21715 3) Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; Losovyj, Y.; Zhang, X.; Dowben, P.A.; Mohammed, O.F.; Sargent, E.H.; Bakr, O.M. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. *Science* **2015** *347*, 519-522 (6221).

