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Part 1: Optimal Energy Management for Hybrid Electric Agricultural Tractors
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Fig. 1 The role of the energy management system in hybrid electric vehicles. 

➢ The optimal energy management problem is a nonlinear constrained OCP. Three

different numerical methods were applied to solve the OCP.

Part 2: IEEE Vehicular Technology Society Motor Vehicle Challenge 2019 – Energy Management of a Dual-mode Locomotive

Fig. 7 Structural scheme of the studied dual-mode locomotive.

Design an EMS to minimize the trip operational costs:

• Minimize the electricity costs

• Minimize the hydrogen consumption

• Increase the lifetime of the fuel cell, battery, and

supercapacitor

************************************

Competition award

************************************

• We are the second-place winner among

45 academic and professional teams

from 15 countries. The winners will be

officially announced and the awards will

be presented at the 2019 IEEE Vehicle

Power and Propulsion Conference

(VPPC).

• We are invited to write a paper to report

our challenge results, which will be

presented in a special session dedicated

to the challenge at the IEEE VPPC 2019.

**************************************

Result of Our Solution

**************************************

Cost results of the simulation with a Cycle 

Contest SNCF

1. The fuel cell cost is 7.09 €

2. The H2 cost is  0.32 €

3. The battery cost is 6.77 €

4. The supercapacitors cost is 3.90 €

5. The electricity network cost is 6.15 €

6. The penalty cost of the charge sustaining 

mode is -18.17 €

7. The total cost of the trip is 6.06 €
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• Start-stop of fuel cells is expensive. So minimize it.

• Electricity is cheap. So charge the battery and

supercapacitor when the DC line is connected.

• After fuel cell starts, keep it work at most efficient

point as much as possible.

• To minimize the battery degradation, the SOC

should be maintained close to 100%.

• Constraints on DC bus voltage range, battery

current, maximal variation rate of the fuel cell

current, and supercapacitor voltage, should be

guaranteed.

• The life cycle of supercapacitor is much longer than

that of battery. So the supercapacitor can be

charged and discharged frequently.

⋮

⋮

Operational Cost Analysis

EMS Design Considerations

Our Solution: Heuristic Method
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• A simple control system consists of

proportional controller, filtering-based

controller, and state machine logic, and

satisfies all the operation constraints.

• Consider three discrete states: DC line on-

off, fuel cell on-off, regenerative or 

motoring

• Consider two continuous states: battery 

SOC and supercapacitor SOC.

• Pros: easy implementation, real-time 

strategy, and insensitive to different 

driving cycles. 

1. Introduction

Fig. 2 The powertrain architecture of a typical series hybrid electric agricultural tractor (HEAT).

➢ Problem description

Develop optimal energy management strategies (EMSs) to minimize fuel consumptions in

typical working cycles.

➢ Contributions

1) In contrast to the rule-based EMSs in the literatures, this work proposed optimization-

based EMSs for HEATs.

2) The energy management problem was further formulated as a nonlinear constrained

optimal control problem (OCP) to minimize the fuel consumptions.

3) Three different numerical methods were adopted to solve the OCP. Compared with typical

rule-based EMSs, the optimization-based EMSs can improve 3%-5% fuel economy.

2. Modeling and Problem Formulation
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Control-oriented model for EMS

1) Genset model
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2) Battery model

3) Power demand model
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Optimal energy management problem
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Subject to the following constraints:

State equation: 

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

Boundary conditions:

𝑥 𝑡0 = 𝑥0, 𝑥 𝑡𝑓 = 𝑥𝑓
State constraints:

𝑥𝑚𝑖𝑛 ≤ 𝑥 𝑡 ≤ 𝑥𝑚𝑎𝑥

Control constraints:

𝑃𝑏.𝑚𝑖𝑛 𝑡 ≤ 𝑢 𝑡 ≤ 𝑃𝑏.𝑚𝑎𝑥,

𝑃𝑑𝑒𝑚 𝑡 − 𝑃𝑔.𝑚𝑎𝑥 ≤ 𝑢 𝑡 ≤ 𝑃𝑑𝑒𝑚 𝑡 − 𝑃𝑔.𝑚𝑖𝑛

Minimize

3. Numerical Methods

➢ The energy management system is the supervisory control layer in hybrid electric vehicles

that manage the power flows between different energy sources and loads of the vehicles,

such as internal combustion engine, battery, traction motor(s), etc.

Algorithm 1: Dynamic Programming (DP)

1) Calculate the cost-to-go function at each node in the discretized-time state space

2) Proceed backward in time (bottom-up fashion)

Algorithm 2: Indirect Method Based on Pontryagin Minimum Principle (PMP)

1) Derive the necessary conditions for optimality according to the PMP

2) Solve the two-point boundary value problem with the shooting method

4. Simulation Results

5. Conclusions

1. Power Demand Profiles

2. State of Charge (SOC) Trajectory

Fig. 3 Power demand of a plough cycle. Fig. 4 Power demand of a plough cycle.

Fig. 5 Optimal SOC trajectory of a plough cycle. Fig. 6 Optimal SOC trajectory of a transport cycle.

3. Fuel Consumption

➢ Optimization-based energy management problem was formulated for HEATs.

➢ Three numerical methods, i.e., DP, PMP-based indirect method, and NLP-based direct

method were studied to solve the energy management problem to obtain the optimal

EMSs.

➢ Simulation results demonstrated that compared with the rule-based benchmark EMS

(power follower strategy), the three optimal EMSs achieved up to 5% fuel economy

improvement.

➢ Future work will consider battery degradation in the optimization framework to prolong

the battery lifetime.

Working Cycle

Fuel Consumption [g]
Fuel Saving 

[%]
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Method

Direct 

Method

Rule-based

Strategy

Plough Cycle 1717.9 1718.5 1718.5 1772.6 3.08

Transport Cycle 1359.0 1359.1 1359.7 1431.5 4.99

Algorithm 3: Direct Method Based on Nonlinear Programming (NLP)

1) Discretize with Legendre-Gauss-Radau (LGR) orthogonal collocation method

2) Approximate state and control variables with Lagrange interpolating polynomials

3) Transcribe into a NLP framework and optimize with a powerful solver
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