

Motivation

- ***** Use the 'high-entropy' concept to develop novel ceramic materials for the extreme environments in next-generation nuclear energy systems
- Potential applications: fuel cladding, structural component
- ***** High melting temperature, high irradiation damage resistance, high-temperature strength, thermal shock resistance and corrosion resistance.

Background

Example: Steel

Traditional alloys High-entropy alloys **Example: CoCrFeMnNi**

element **High-entropy ceramics Example:** (Hf_{0.2}Zr_{0.2}Ta_{0.2}Nb_{0.2}Ti_{0.2})C

Metal

elements

Non-metal

- **Traditional alloys**: base element and trace amount of other elements.
- **High-entropy alloys**: multiple principal elements mixed in an equimolar or near equimolar composition but form a single BCC, FCC or HCP structure.
- **High-entropy ceramics**: single-phase structure with disorder of multiple metal elements at cation positions, ordered C, B or O elements at the anion positions.

High-Entropy Effects

- **1.** Thermodynamically more stable
- 2. Lattice distortion
- 3. Sluggish diffusion
- 4. Cocktail effect

Configuration entropy of mixing per mole:

$$\Delta S_{mix} = -R\sum_{i=1}^{n} c_i lnc_i \quad G = H - TS$$

Lattice distortion

High-Entropy Carbide Ceramics for Extreme Environments

Fei Wang¹, Xueliang Yan¹, Loic Constantin^{2,3}, Yongfeng Lu², Jean-François³, Lin Shao⁴, Michael Nastasi⁵, Bai Cui¹

¹Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln., ²Department of Computer & Electrical Engineering, University of Nebraska–Lincoln, ³Institut de Chimie de la Matiere Condensee de Bordeaux, Pessac, France.,⁴Texas A&M University, Texas, USA., ⁵Nebraska Center for Energy Sciences Research, University of Nebraska–Lincoln

Results

1. Synthesis of $(Hf_{0.2}Zr_{0.2}Ta_{0.2}Nb_{0.2}Ti_{0.2})C$

ZrC, TiC, NbC, TaC and HfC powders mixed with an equimolar composition

Ball milling 250 rpm/6 hours/Ar

SPS sintering 2000°C/30 MPa 5 min/vacuum

Sintered sample: Size:ø 20*3 mm

2. Single phase rock-salt crystal structure of HEC

Schematic of the rock salt structure of HEC

XRD of HEC and the 5

High-resolution TEM

binary carbides Lattice parameter: 4.518 Å, which is close to the average lattice parameter (4.513 Å) of 5 binary carbides.

3. Homogenous elements distribution in HEC

Microscale EDS of HEC

SEM image of the grains of HEC

4. Ultra-high nanoindentation hardness of HEC

Materials	Elastic modulus, <i>E</i> (GPa)	Vickers hardness, <i>H</i> v(GPa)	Nanoindentation hardness (GPa)
HEC	479	15	48.9
HfC	450-500	18.3	29.0
ZrC	464	17.6	32.5
TaC	458	13.9	18.6
NbC	392	22.1	24.5
TiC	448	21.87	25.6

5. High temperature thermal stability of HEC

XRD before and after annealing

EDS of sample after annealing at 1700 °C

6. Low thermal diffusivity and conductivity of HEC

Materials	Thermal diffusivity, α (mm²/s)	Thermal conductivity, k (W/m·K)	Thermal expansio coefficient, α [_] (10 ⁻⁶ I
HEC	3.6	6.45	6.44
NbC	6.29	6.3	6.65
TiC	8.32	22.2	6.99
HfC	12.3	29.3	6.6
TaC	12.4	33.5	6.29
ZrC	15.2	33.5	6.74

7. Good irradiation resistance of HEC

SRIM-calculated helium concentration and the measured number density of helium bubbles

Bright-field TEM image of helium bubbles

Conclusions

- Single-phase $(Hf_{0.2}Zr_{0.2}Ta_{0.2}Nb_{0.2}Ti_{0.2})C$ was synthesized by SPS.
- Thermal stability at least up to 1700°C due to the low Gibbs free energy.
- Ultra-high nanoindentation hardness is due to distorted lattice. 3.
- 4. Low thermal conductivity and diffusivity due to scattering of phonons by lattice distortions.
- Helium bubble coalesce and growth is suppressed by high-entropy effect. 5.

Acknowledgements

This work was supported by the Nebraska Center for Energy Sciences Research. Nuclear Regulatory Commission Faculty Development Grant (No. 31310018M0045) Nuclear Science User Facilities Rapid Turnaround Project (No. 18-1589)

