

Novel Grain Storage Systems Amir Ebrahimifakhar¹, David Yuill¹, Joel Scott², Mary-Grace Danao³ University of Nebraska-Lincoln

Introduction

- Grain chilling is a non-chemical preservation alternative to drying.
- Can be done with a heat pump system that could control the temperature and moisture content in stored grains.

Figure 1. On farm grain storage bin

- Chilling **advantages**:
 - Long-term storage of grains without quality deterioration
 - Lower energy requirement than drying
 - Potential for close control of moisture content
 - Increases farmer flexibility for marketing

Objectives

- Develop heat & mass transfer model for grainaeration
- Develop a simplified heat pump model
- Integrate heat pump model + grain-aeration model
- Design a model-based controller to optimize the process over time, with changing weather
- Economic analysis of potential on-farm savings
- Improved understanding of grain quality effects

Equilibrium Moisture Content

period of time.

Figure 2. Sorption and desorption isotherms of wheat

Heat Pump Systems

- Evaporator + fan
- Compressor
- Condenser + fan
- Expansion Valve
- Fans and compressor can be run at varying speed.

The equilibrium moisture content (EMC): the moisture content of grain after it has been exposed to a particular environment for an infinitely long

Major components:

Figure 3. Grain heat pump system (www.frigortec.com)

Deep-bed Drying Models

- The models for deep-bed drying are classified as:
 - Graphical and logarithmic models
 - Heat and mass balance models
 - Partial differential equation models
- Partial differential equation (PDE) model: \bullet
 - Provides a better description of the process.
 - Cannot be solved analytically.
 - Solution process is a numerical integration.
 - Deep-bed modeled as a series of thin layers.
 - Four PDEs must be solved:
 - Mass balance equation
 - Drying rate equation
 - Heat balance equation
 - Heat transfer rate equation
- PDE model was selected and programmed. \bullet

Allowable Storage Time

• Allowable storage time is the storage period before quality loss is expected to affect grain quality.

Table 1. Example: Storage periods (days) for corn

Grain temperature (°F)	Corn moisture (%)						
	18	20	22	24	26	28	30
35	432	214	126	85	62	49	40
40	288	142	84	56	41	32	27
45	192	95	56	37	27	21	18
50	128	63	37	25	18	14	12
55	85	42	25	16	12	9	8
60	56	28	17	11	8	7	5
65	42	21	13	8	6	5	4
70	31	16	9	6	5	4	3

1. Architectural Engineering

- 2. Mechanized Systems Management
- 3. Food Science and Technology

Figure 4. Grain temperature over time

Figure 5. Grain moisture content over time

Conclusions

- So far, a mathematical model of the grain drying process has been developed.
- The model accurately predicts temperature and moisture content of the grain over time.
- The simplified model can be used in an optimal controller for the storage management systems.
- When complete, this work will demonstrate the potential for advanced control of grain chilling, drying, and moisture management systems, as a cost-effective and energy-saving grain farming technology.

