Evolution of irradiation defects in Ti$_2$AlC ceramics during heavy ion irradiation

Fei Wang$^a$, Qing Su$^b$, Michael Nastasi$^{a,b,c}$, Marquis A. Kirk$^d$, Meimei Li$^d$, Bai Cui$^{a,b,c}$

$^a$Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
$^b$Nebraska Center for Energy Research, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
$^c$Nebraska Center for Materials and Nanoscience, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
$^d$Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA

A R T I C L E   I N F O

Keywords:
Ti$_2$AlC
MAX phases
Irradiation defects
In-situ TEM

A B S T R A C T

The evolution of irradiation defects in Ti$_2$AlC under Kr ion irradiation at room and elevated temperatures has been investigated. The dependence of defect size and density on the irradiation dose and temperature was characterized by in-situ transmission electron microscopy (TEM) irradiation experiments. At 35–800 °C, interstitial-type dislocation loops with several nanometers in diameter form on the basal plane of Ti$_2$AlC mostly with a Burgers vector of $\frac{1}{2}$[0 0 1], and no voids have been observed. The number density of dislocation loops approaches saturation at a level of about 2 dpa at 800 °C. Ti$_2$AlC samples remain crystalline in structure without amorphization or phase transformation. However, the localized disorder of atomic positions on the basal plane of the irradiated Ti$_2$AlC was revealed by high-resolution transmission electron microscopy (HRTEM) studies, which increases with irradiation dose while decreases with elevated temperatures.

1. Introduction

Ti$_2$AlC is a member of MAX phases [1,2], a family of ternary compounds with general formula M$_x$AX$_{3-x}$, where M is a transition metal, A is a group IIIA or IVA element, X is C or N, and $x$ is from 1 to 3. Similar to other MAX phases, Ti$_2$AlC has a layered hexagonal structure (space group P6$_3$/mmc, $a = 0.304$ nm, c = 1.360 nm) with Ti$_2$C layers interleaved with Al layers [3]. Ti$_2$AlC is a promising candidate material for nuclear fuel cladding applications in Generation-IV fission reactor systems such as gas cooled reactors [2,4]. In Generation IV nuclear power systems, the fuel cladding materials need to survive an irradiation dose of up to 200 dpa [5]. Ti$_2$AlC has attracted increasing interest in the nuclear industry, e.g., Westinghouse [6], as it exhibits outstanding properties such as thermal stability at high temperatures (up to 1625 °C in Ar [7]), oxidation resistance both in steam and air [8,9], thermal shock resistance, and low neutron absorption cross-section [2,10]. For example, Hoffman et al. calculated the neutron activation of several MAX phases, including TiS$_2$SiC$_2$, Ti$_2$AlC, and Ti$_2$AlC exposed to idealized fast and thermal reactors [2]. The results show that the specific activities of these MAX phases are similar to SiC and three orders of magnitude less than nickel alloy 617 after 10–60 years decay. Ti$_2$AlC shows an excellent corrosion resistance in steam at 1000–1300 °C due to the formation of a continuous $\alpha$-$\text{Al}_2\text{O}_3$ layer, which provides passive protection in the steam environment and adheres well to the Ti$_2$AlC substrate [9]. Ti$_2$AlC is also resistant to oxidation in the air at or below 1300 °C, due to the formation of a dense and continuous inner $\alpha$-$\text{Al}_2\text{O}_3$ layer below the outer Ti$_2$O$_3$ layer [9,11].

Like other MAX phases, the fundamental irradiation damage mechanisms in Ti$_2$AlC are still not well understood. The irradiation response of Ti$_2$AlC ceramics has been studied using neutrons, heavy ions and helium irradiations, which has concluded several common characteristics. First, MAX phases such as Ti$_2$AlC have a superior resistance to amorphization to a high damage level, which has been confirmed by electron diffraction, X-ray diffraction and nanoindentations [12–14]. For example, Clark et al. found no signs of amorphization in 5.8 MeV Ni$^{12+}$-irradiated Ti$_2$AlC samples up to ~30 displacement per atom (dpa) at 400 and 700 °C [14]. In comparison, TiC ceramics become partially amorphous at 2 dpa under Kr-ion irradiation at room temperature [15]. Such significant difference in irradiation-induced amorphization behavior between Ti$_2$AlC and TiC indicates that the layered structure and/or the Al layer may contribute to the high amorphization resistance of Ti$_2$AlC. Second, the irradiation causes a change of lattice parameters, which has been revealed using X-ray diffraction, with an expansion in c-lattice and a reduction in the a-lattice [2,14,15,17]. This anisotropic change of lattice parameters has resulted in anisotropic swelling and microcracking of Ti$_2$AlC samples during neutron or heavy ion...
irradiation, particularly along the grain boundaries, which has become a critical concern of Ti$_2$AlC MAX phase for nuclear energy applications [14, 18].

This paper specifically addresses the process of the defect evolution in Ti$_2$AlC ceramics under heavy ion irradiation at room and elevated temperatures, which is important for the fundamental understanding of irradiation damage mechanisms. With the aid of in-situ irradiation experiments in a transmission electron microscope, the formation, growth, migration, and interaction process of irradiation defects can be directly and continuously observed. In this work, Ti$_2$AlC samples have been irradiated with 1 MeV Kr ions to generate irradiation defects at 25, 500 and 800 °C. Progressive microstructure evolution with the irradiation dose and temperature has been investigated.

2. Experimental procedure

Ti$_2$AlC samples were prepared by uniaxial hot-pressing of Ti, Al and graphite mixed powders at 30 MPa and 1400 °C for 1 h in flowing argon atmosphere [19]. The samples were provided by the Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China. The as-received samples were reasonably phase-pure, and we confirmed the analyzed grains were Ti$_2$AlC by selected area electron diffraction, with a density of 4.10 g cm$^{-3}$ (99.8% theoretical density) measured by the Archimedes method. The microstructural characterization by optical microscopy showed that Ti$_2$AlC ceramics have lamellar grains of 50-100 μm long, 10-20 μm wide and 3-10 μm thick (Fig. 1). Ti$_2$AlC specimens were cut into slices with a diameter of 3 mm, and then mechanically polished until the thickness was reduced to less than 100 μm. Final thinning to electron transparency was performed by using a twin jet polisher (Tenupol-5, Struers, Ballerup, Denmark) with a 3% perchloric acid and 95% methanol electrolyte at ~30 °C.

The in-situ irradiation experiments were carried out at the IVEM facility at Argonne National Laboratory [20-22]. This facility consists of a Hitachi-900 transmission electron microscope and a NEC implanter (National Electrostatics Corporation, Middleton, WI). Ti$_2$AlC samples were loaded on a double-tilt holder with in-situ heating capability (Gatan model 652, Gatan Inc., Warrendale, PA). The irradiation experiments were conducted at three temperatures: 25, 500 and 800 °C.

Ti$_2$AlC samples were irradiated by 1 MeV Kr ion to a maximum fluence of 5 $\times$ 10$^{19}$ ions m$^{-2}$. The dose rate was 0.00049 dpa/s. The accuracy of dose level is ±10%. Displacements per atom (dpa) was calculated by the Stopping and Range of Ions in Matter (SRIM) simulation code using the Kinchin-Pease model and following the recommendations by Stoller et al. [23, 24]. The threshold displacement energies of Ti, Al and C are 25, 25 and 28 eV, respectively. Under the irradiation conditions of this study, a fluence of 5 $\times$ 10$^{19}$ ions m$^{-2}$ of 1 MeV Kr ion can cause a damage level of about 4 dpa. The SRIM simulation also suggests 99.42% of Kr ions pass through the thin foil, resulting in negligible ion implantation in the sample.

Transmission electron microscopy (TEM) images of irradiation defects on different irradiation conditions were taken using bright-field and dark-field imaging modes under dynamical two-beam conditions, or using weak-beam dark-field imaging modes. In order to compare the size and density of irradiation defects at different irradiation dose levels, TEM images were taken carefully in the same area of the same sample and under the same imaging conditions. It is important to note that TEM could not well resolve the defects smaller than 1 nm [25, 26]. The areal density of irradiation defects was calculated as a function of irradiation dose and temperature, which is defined as the number of defect clusters in a unit area of the TEM foil. The procedures for counting the number and errors of defect clusters followed the method described by Kirk and Jenkins [25]. The thickness of the foil is estimated to be about 100 nm in the regions of observation, so the volume density of irradiation defects is approximately proportional to the areal density. The Burgers vector of irradiation defects was determined by using the gb invisibility condition in the weak-beam dark-field mode. Selected area electron diffraction (SAED) was used to monitor the change of crystal structures during irradiation process, and in particular examine if amorphization occurred. Under-focus and over-focus Fresnel contrast imaging method was used to search for the formation of voids in samples during irradiation process [19]. High resolution transmission electron microscopy (HRTEM) of irradiated samples were carried out in a Tecnal Osiris S/TEM (PEL, Hillsboro, OR) operated at 200 kV.

3. Results

3.1. Evolution of irradiation defects

Fig. 2 shows representative dark-field images of irradiation defects in Ti$_2$AlC after 1 MeV Kr ion irradiation to dose levels up to 4 dpa at three temperatures: 25, 500 and 800 °C. These irradiation defects appear as bright dots under the dark-field imaging conditions in TEM. Under all these irradiation conditions, irradiation defects in Ti$_2$AlC are small dislocation loops with several nanometers in diameter.

Statistic results of the size and areal density of irradiation defects as a function of irradiation dose and temperature are presented in Fig. 3. Several characteristics of the evolution of irradiation defects in Ti$_2$AlC were observed:

1. The size of irradiation defects increases slowly with irradiation dose and temperatures (Fig. 3a). At 25 °C, the average diameter of defects is about ~2.5 nm, with slight increase to ~3 nm at 4 dpa. At 500 °C, the average diameter of irradiation defects increased from 3.4 nm to 4.6 nm as irradiation dose increased from 0.7 dpa to 4 dpa. At 800 °C, the average diameter of irradiation defects increased from 4.2 nm (0.5 dpa) to 5.8 nm (4 dpa).
2. The areal density of irradiation defects decreases with elevated temperature (Fig. 3b).

3. The areal density of irradiation defects approaches the saturation at a dose level of about 2 dpa at 800 °C (Fig. 3b). In the samples irradiated at 25 °C and 500 °C, the areal density of defects increased quickly with irradiation dose below 2 dpa, after which the increasing rates of areal density appears to be much lower.

These characteristics will be discussed further in Section 5.

Fig. 4 are the weak-beam dark-field images of irradiation defects in Ti$_2$AlC at 4 dpa and 800 °C under [1 0 0 1] and [1 0 0 1] diffraction vectors. Most irradiation defects are visible under [1 0 1 0] while invisible under [1 0 0 0], suggesting their Burgers vector is $\frac{1}{2} [0 0 0 1]$. In addition, these $\frac{1}{2} [0 0 0 1]$-type defects lay on the basal plane (i.e., [0 0 0 1]), forming a striped pattern. However, a small number of other irradiation defects (arrowheads in Fig. 4b) are visible in both [1 0 1 0] and [1 0 0 1] (i.e., the prism zone axis), indicating their Burgers vector may have a prismatic component.

No voids were found in Ti$_2$AlC after 1 MeV Kr ion irradiation to dose
levels up to 4 dpa at 25, 500 and 800 °C. This was confirmed using the Fresnel contrast imaging method in different samples.

3.2. Amorphization resistance and localised disorder

Ti$_2$AlC samples remain crystalline under all irradiation conditions used in this study. For example, Fig. 5 shows SAED of the [0 0 0 1] zone from samples irradiated to 4 dpa at 25 °C and 800 °C, respectively. There is no amorphization ring in both samples. In addition, SAED investigations suggest neither phase transformation nor secondary phase formation occurred under these irradiation conditions.

HRTEM investigations revealed localized disorder of the structure in irradiated Ti$_2$AlC samples at the atomic scale. Fig. 6 are the representative HRTEM images of the (0 0 0 1) plane of Ti$_2$AlC samples before irradiation (Fig. 6a) and after irradiated to 2 (Fig. 6b) and 4 dpa (Fig. 6c) at 25 °C, and 4 dpa at 800 °C (Fig. 6d). In some areas (indicated by arrows), the periodicity of lattice fringes was disturbed by irradiation and the structure order is locally lost. The fraction of structure
disorder area in Ti₅AlC was statistically measured in these samples and shown in Table 1. This suggests that the structure disorder increases with dose, while decreases with elevated temperature at the same irradiation dose.

Fig. 7 are the representative HRTEM images of Ti₅AlC along [1 1 2 0] direction before and after 1 MeV Kr ion irradiation. The irradiation has caused the perturbation of stacking of the basal plane [i.e., (0 0 0 1) plane or c plane]. As the irradiation dose increases from 0, 2 to 4 dpa the stacking of the basal plane is lost in more regions. In addition, Fig. 7e shows the interstitial-type dislocation loops with size of 2.5 nm and 5 nm on the basal plane, which are presented as an extra atomic layer in the Fourier filtered image. The identification of dislocations loops in the HRTEM investigations confirms the observation of dislocation loops in weak-beam dark field TEM investigations (Fig. 4), and further suggests the nature of these dislocation loops is interstitial.

4. Discussion

The defect generation in MAX phases such as Ti₅AlC have been studied using TEM characterizations of ion-irradiated or neutron-irradiated samples and using first-principle calculations.

Several first-principle studies have found that the Al layer in the layered structure of Ti₅AlC is important for the irradiation resistance. The formation energy of a Frenkel pair (E_F) in the Al layer (< 3 eV) is much lower than those within the TiC blocks (> 9 eV) [27–29]. Substitutional antisite defects Ti₅Al also have a low formation energy (2.96 eV). Based on the low formation energy of these point defects, Xiao et al. suggests that the Al layer could act as potential defect sinks in Ti₅AlC [27]. In addition, these modeling studies show that Ti, Al and C interstitials can form within the Al-layer, or in the space between Al and Ti layers [28,30]. Tallman et al. proposed that the Ti and Al interstitials could agglomerate into lattice-coherent dislocation loops within the space between the Ti and Al layer, and substitutional antisite defects Ti₅Al could form dislocation loops within the Al layer [31]. These simulations studies are consistent with the experimental observations of interstitial-type dislocation loops on the basal plane (Fig. 4 and Fig. 7e).

Experimental evidences support that MAX phases have mobile interstitials and immobile vacancies in the "point defect swelling" regime, which is above the recovery Stage I (onset temperature for interstitial motion) and below Stage III (onset temperature for vacancy motion). This regime is typically between 0.1 and 0.3 T_m (melting temperature) [32,33]. Based on TEM investigation of 5.8 MeV Ni⁺⁺⁺-irradiated MAX phases such as Ti₅AlC, Ti₅AlC and Ti₅SiC₂, Clark et al. suggests that 25 °C is above the onset temperature for interstitial motion, while 700 °C is below the onset temperature for vacancy motion [14]. Similarly, our results from in-situ TEM irradiation experiments suggest that 1 MeV Kr-irradiated Ti₅AlC ceramics may have mobile interstitials and immobile vacancies in the temperature regime of 25–800 °C. First, there is no evidence of void formation at 25, 500 and 800 °C, suggesting the void nucleation and growth is strongly suppressed at 25–800 °C. Second, the high concentration of immobile vacancies can serve as recombination centers for mobile interstitials. As a result, the damage accumulation of interstitial-type irradiation defects will be saturated at a

Fig. 4. Weak-beam dark field images of irradiation defects in Ti₅AlC at 4 dpa and 800 °C under two conditions of diffraction vector (g): (a) g = [1 0 −1 3]; (b) g = [1 0 −1 0]. Most defects are on the (0 0 0 1) plane with a burgers vector of 1/2[0 0 0 1]. The arrowheads in b indicates a few defects which have a non-basal component.
The fraction of structure disorder area on (0 0 0 1) plane of Ti2AlC as a function of irradiation dose and temperature.

<table>
<thead>
<tr>
<th>Irradiation Dose/dpa</th>
<th>Temperature / °C</th>
<th>Crystal Plane</th>
<th>Disorder fraction/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
<td>(0 0 0 1)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>(0 0 0 1)</td>
<td>8.8 ± 1.1</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>(0 0 0 1)</td>
<td>34.3 ± 2.1</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>(0 0 0 1)</td>
<td>24.8 ± 3.0</td>
</tr>
</tbody>
</table>

Fig. 5. SAED of Ti2AlC after irradiation: (a) 4 dpa, 25 °C, [0 0 0 1] zone; (b) 4 dpa, 800 °C, [0 0 0 1] zone.

Fig. 6. HRTEM images of the (0 0 0 1) plane of Ti2AlC samples before and after irradiation: (a) before irradiation (b) 2 dpa, 25 °C; (c) 4 dpa, 25 °C; (d) 4 dpa, 800 °C. The areas with structure disorder are indicated by arrows. Inset: SAED of the (0 0 0 1) plane.

low damage level. Indeed, the saturation of irradiation defects in Kr-irradiated Ti2AlC ceramics is observed at about 2 dpa at 800 °C (Fig. 3b). An alternate explanation for defect saturation might be that some interstitials migrate to the surface of TEM foil and annihilate there. However, this will not likely cause the saturation of irradiation defects as the damage could continue to accumulate in the central area of the TEM foil.

The observation that most irradiation defects are on the basal plane with a Burgers vector of 1/2 [0 0 0 1] in Ti2AlC is consistent with previous observations, suggesting they are Frank loops [14, 31, 34]. However, a small number of irradiation defects have a Burgers vector with a prismatic component. Similar results have been also observed in 5.8 MeV Ni⁺⁺-irradiated Ti2AlC samples at 400 °C [14]. This suggests that a complete analysis of the nature of irradiation defects in Ti2AlC is still necessary, which may need theoretical simulations to aid the understanding of the defect formation mechanisms at the atomic level.

As interstitials form on the basal plane, they could cluster to interstitial-type defect clusters, or anneal into immobile vacancies or other defect sinks such as grain boundaries. The high density of small defect clusters at 25 °C indicate interstitials are sufficiently mobile to form interstitial-type defect clusters, i.e., dislocation loops. With increasing temperature, interstitials will be more mobile and can thus recombine with the immobile vacancies. This will reduce the number density of interstitial-type defect clusters while forming larger defect clusters at higher temperature. Indeed, this is supported by TEM characterization of irradiation defect clusters at 25, 500 and 800 °C (Fig. 3).

The irradiation-induced crystalline-to-amorphous transformation in ceramics could occur homogeneously or heterogeneously, typically at temperatures where interstitials are immobile [32]. Weber suggests that during irradiation, simultaneous recovery processes can mitigate
damage production, and the rate of amorphization will depend on the relative magnitude of damage production and recovery processes [35]. The recovery processes can be associated with point defect recombination or annihilation in the crystalline state, or point defect annihilation or epitaxial recrystallization at crystal/amorphous interfaces. In Ti<sub>2</sub>AlC, the recovery process occurs via the recombination of mobile interstitials with immobile vacancies, which likely reduce the trend of irradiation-induced amorphization at 25-800 °C. However, it should be commented that the fundamental mechanisms of amorphization resistance in MAX phases such as Ti<sub>2</sub>AlC still remain poorly understood, which may be better understood with the atomic scale simulations.

The localized structural disorder on the basal plane of Ti<sub>2</sub>AlC (Fig. 6) are very likely caused by Ti and Al interstitials, along with substitutional antisite defects Ti<sub>Al</sub>, which disturb the stacking sequence of atoms on the basal planes. It is observed that some localized disordered regions are associated with basal-plane dislocation loops (Fig. 7c). However, it may need more experimental studies and atomic simulations to understand the relation between the localized disorder and the dislocation loop formation.

5. Conclusions

In-situ 1 MeV Kr ion irradiation of Ti<sub>2</sub>AlC was conducted to study microstructure changes during irradiation process up to 4 dpa, at 25, 500 and 800 °C. At these temperatures, small dislocation loops with several nanometers in diameter accumulate in the microstructure, and no void formation has been observed. Most dislocation loops are interstitial-type, forming on the basal plane with a Burgers vector of 1/2[0 0 1]. The size of dislocation loops slowly increases with the irradiation dose, while the number density of dislocation loops approaches saturation at a level of about 2 dpa at 800 °C. With increasing temperature, larger dislocation loops form with reduced areal density. Ti<sub>2</sub>AlC samples remain crystalline structure at all irradiation conditions, without amorphization or phase transformation. However, localized structural disorder disrupts the stacking sequence of atoms on the basal planes, which increases with irradiation dose while decreases with elevated temperatures.

Acknowledgments

We would like to express gratitude for Prof. Xiaohui Wang (Shenyang National Laboratory for Materials Science, CAS) for
providing Ti$_2$AlC samples. This work was supported by the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research. The electron microscopy with in-situ ion irradiation was accomplished at Argonne National Laboratory at the IVEM-Tandem facility, a U.S. DOE facility funded by the DOE Office of Nuclear Energy, operating under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. The authors would like to express their great gratitude to Dr. Edward A. Ryan and Peter M. Baido, for their help with the operation of this facility. The research was performed in part in the Nebraska Nanoscale Facility: National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience, which are supported by the National Science Foundation under Award ECCS 1542182 and the Nebraska Research Initiative.

References
