Characteristics of Atomic structure of Amorphous Silicon Oxycarbide Mingyu Gong, Qing Su, Michael Nastasi and Jian Wang

Amorphous silicon oxycarbide (A-SiOC) is attracting extensive research interest because of its superior radiation tolerance. However, its atomic structure is not yet well understood, impeding establishment of structure-property relationship. In this work, we employed Reactive Force Field (ReaxFF) Molecular Dynamics (MD) to simulate A-SiOC structure with different compositions. The simulated bonding length is consistent with the experiment data. The bonding distribution as well as its mechanical behavior is closely related to initial composition.

Background

To extend the lifetime of current nuclear plant, it's necessary to develop the irradiation tolerant alloys without significant structural changes and serious thermal/mechanical degradation under harsh environments. Because **amorphous** materials possess no translational symmetry, these materials offer the possibility of eliminating the root responsible for radiation damage in polycrystalline solids. A-SiOC is one of the amorphous materials with such good irradiation tolerance.

Plan-view TEM images of A-SiOC (1:1) thin film a) *before and b) after 6 dpa irradiation.*

To synthesize A-SiOC, SiO₂ and SiC were **co-sputtered**. The deposit rate for two targets can be adjusted to tune the chemical compositions.

Final Structure

In final structure, there's **no** obvious crystalline features. Most Si atoms bonded to O atoms or C atoms. Few Si-Si bonds were observed.

Lab for Multiscale Interfaces Design in Solids

Simulation Method

Simulation Process: Potential: ReaxFF which is described by charges and bond orders was employed. Initially relax at T=1K for 10000 steps. Conduct **npt** relaxation at T=2000K for 200000 steps.

Finally cool the structure to 1K in 10000 steps.

Model Setup:

- Criterion: The system should be neutral.
- Step 1: Create the crystal structure of α -quartz.
- Step 2: Randomly replace Si atoms with C atoms.
- Step 3: Randomly delete O atoms.
- \succ Si-O, Si-C, Si-Si, C-C, C-O bonds in the structure.

	Experiment	MD S
Si-O Bond	1.62 Å	1.
Si-C Bond	1.89 Å	1.

Difference of **bonding length** between experimental value and MD result is within 5%.

Mechanical Engineering, Engineering Mechanics, Materials Engineering, Biomedical Engineering

imulation

.68 Å

.92 Å

Mechanical Behavior

Mechanical behavior can be tested with pillar indentation in SEM. During compression, A-SiOC not only showed elastic property but also underwent **plastic** deformation. According to Stress-Strain curve, Young's modulus is 68GPa, strength is 6.7GPa. There's 4.5% plastic deformation when the total deformation is 12%.

Conclusion:

 $Si_2O_2C_1$

A method to create A-SiOC structure for MD simulation is developed.

0.12

0.08

- The final structure does not have long range order. Si-O bonds and Si-C bonds are mainly observed.
- A-SiOC shows room temperature plasticity under compression.

