Background

Perovskites are materials with a chemical formula of the form ABX₃, where A and B are cationic and X is anionic. Hybrid lead halide perovskites, where CH₃NH₃Pbl₃ (methylammonium lead iodide, MAPbl₃) is the most notable member of the family, have been known for decades, but several recent experiments started a "perovskite" fever", thanks to the dramatic increases in perovskite solar conversion efficiency seen in only a few years.

To capitalize on this, we investigate lead halide perovskites with the intention of further improving the already excellent qualities of perovskite solar cells, particularly in the areas of energy absorption, quantum yield, carrier mobility and lifetime, and diffusion length. We aimed to synthesize members of two lead halide perovskite families, CsPbX₃ and $CH_3NH_3PbX_3$, and examine their performance in the areas above given their prominence in the field of solar energy.

A²⁺B⁴⁺X²⁻3

CH₃NH₃Pbl₃

Fig. 1. Crystal structures of (A) generic perovskites such as $CsPbX_3$ and (B) MAPbl₃.

Fig. 2. Transmission electron microscopy image of CsPbBr₃ quantum dots. Scale bar is 50nm.

Lincoln ENERGY SCIENCES RESEARCH

Lead Halide Perovskites: from Nanoparticles to Devices Jacob D. Teeter, Takashi Komesu, Mikhail Shekhirev, Xin Huang, Tula R. Paudel, John Goza, Alexey Lipatov, Makhsud Saidaminov, Osman M. Bakr, Evgeny Y. Tsymbal, Axel Enders, Peter A. Dowben, Alexander Sinitskii

CsPbX₃ Nanoparticles

Band gap values calculated from photoluminescence and ultraviolet-visible spectra				
Compound	Absorption onset from UV-vis (nm)	Photoluminescence peak position (nm)	E _g calculated from UV-vis (eV)	E _g calculated from PL (eV)
CsPbCl ₃	410	414	3.02	2.99
CsPb(Cl/Br) ₃	433	440	2.86	2.82
CsPbBr ₃	507	517	2.45	2.40
CsPb(Br/I) ₃	558	561	2.22	2.21
CsPbI ₃	701	701	1.77	1.77

CH₃NH₃PbX₃ Devices

Crystalline CH₃NH₃PbX₃ exhibits charge transport efficiency that exceeds that of thin-film materials in mobility, lifetime, and diffusion length.

References

- 1) Shekhirev, M.; Goza, J.; Teeter, J.D.; Lipatov, A.; Sinitskii, A. Synthesis of cesium lead halide perovskite quantum dots. J. *Chem. Ed.,* submitted for publication, 2017.
- K.; Saidaminov, M.I.; Shi, D.; Abdelhady, A.L.; Bakr, O.M.; Dong, S.; Tsymbal, E.Y.; Dowben, P.A. Surface electronic structure of hybrid organo lead bromide perovskite single crystals. J. Phys. Chem. C. 2016, 120, 21710–21715
- Losovyj, Y.; Zhang, X.; Dowben, P.A.; Mohammed, O.F.; Sargent, E.H.; Bakr, O.M. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. *Science* **2015** *347*, 519-522 (6221).

Synthesis of CsPbX₃ nanoparticles: Under a N₂ atmosphere, 15 mL of ODE, 3 mL of oleylamine, 1.5 mL of oleic acid and 0.54 mmol of PbX₂ should be added to a three-neck flask. The mixture should be degassed at 100 ° C for 10 minutes, mixed at 100 °C for 30 minutes (until PbX₂ dissolves, 150 °C and 1 mL of trioctylphosphine are needed to dissolve PbCl₂) and then brought to desired temperature (typically 170° C). 0.55 mL of Cs-oleate should be quickly injected into the PbX₂ solution via glass syringe through a septum. After five seconds, the threeneck flask should be cooled down by the ice-water bath. Centrifugation can extract the nanoparticles, (5000 rpm, 5 min) which should then be redissolved in 8 mL of hexane. In the case of CsPbCl₃ and CsPbBr₃, 10 mL of acetone could be added to facilitate the precipitation.

Crystallization of CH₃NH₃PbBr₃: PbBr₃ and CH₃NH₃Br (1:1, 0.2 M) should be dissolved in N,N-dimethylformamide. CH₃NH₃PbBr₃ single crystals should grow along with the slow diffusion of the vapor of the anti-solvent dichloromethane (DCM) into the solution.

Crystallization of CH₃NH₃Pbl3. The same technique and antisolvent for crystallizing CH₃NH₃PbBr3 applies. Pbl₂ and CH₃NH₃I $(1:3 by molar, 0.5 M Pbl_2)$ should be dissolved in gammabutyrolactone.

Simply-synthesized CsPbX₃ nanoparticles can exhibit fluorescent quantum yields up to 90%, and their emission is in the visible range of spectrum with a narrow band width. The emission wavelength can be modified by tuning both size and composition of the nanoparticles, which is most easily done through the choice of halide. This makes them highly desirable for absorbing energy in solar cells, as the wide range of wavelengths covered efficiently captures a broad spectrum of solar output. CH₃NH₃PbX₃ perovskites also performed

exceptionally well, even relative to the highest performers in the efficiency competition. They exhibited electron mobilities up to $115 \text{ cm}^2/\text{Vs}$, diffusion lengths of up to $17\mu m$, and carrier lifetimes approaching $1\mu s$, all of which contribute greatly to pushing the boundaries of efficiency.

Methods

Summary

2) Komesu, T.; Huang, X.; Paudel, T.R.; Losovyj, Y.B.; Zhang, X.; Schwier, E.F.; Kojima, Y.; Zheng, M.; Iwasawa, H.; Shimada, 3) Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.;

