

Kinetic and Mechanistic Investigations of the **Direct Synthesis of Dimethyl Carbonate (DMC) from** CO, over Ceria Nanorod Catalysts **By Chris Marin and Barry Cheung**

Making CO₂ Useful

CO_2 + $CH_3OH \rightleftharpoons DMC$ + H_2O

CO₂ is a waste product from combustion for power generation and transportation

- In 2012, U.S. CO₂ emissions were > 6 *billion* tons
- CO₂ atmospheric concentrations are higher than they have been in 800,000 years

Equilibrium Dynamics of DMC

- Reaction trades yields (at low T) for rates (at high T)
- Slow side product formation reduces peak yield.
- Rates at lower T must improve to make production economical.

Ceria Nanorod Catalyst

- Reaction is performed under high pressures (2000 psi)

Atmospheric CO_2 at Mauna Loa observatory 1958-2013. (Data from the Scripps Institution of Oceanography and NOAA Earth System Research Laboratory, http://www.esrl.noaa.gov/gmd/ccgg/trends/).

Reaction Kinetics

Ceria (g)		[Ceria] (M)	%DMC/hour
0.0526		0.00102	0.171
0.104		0.00201	0.250
0.150		0.00291	0.325
0.206		0.00399	0.356
0.249		0.00482	0.429
-0.4 _T			
slope = 0.58 (±0.03)			
-0.9 -			_
ate		•	
₩°-1.4 -		8	

BET surface area 82 m²/g

200 nm

Higher pressures minimize the entropy term and helps drive the reaction to products.

Reaction Mechanism

- From kinetics, we know that methanol and CO_2 are adsorbing in separate steps
- Reaction rate is limited by the rate of CO_2 adsorption on the ceria surface

50 nm

- Initial rate varies directly with catalyst loading.
- This suggests that the rate determining step occurs on the catalyst surface.
- Initial rate varies indirectly with methanol loading.
- This suggests that methanol is not involved in the rate determining step.

- Increasing ceria surface area improves the catalyst performance
- Reaction should be run at high CO₂ to methanol ratio for best turnover rates
- Improving CO₂ adsorption will likely give best gains in reaction rates

