

Laser Shock Peening of Oxide-Dispersion-Strengthened Austenitic Alloys Fei Wang¹, Qiaofeng Lu¹, Chenfei Zhang², Yongfeng Lu², Qing Su³, Michael Nastasi³, Bai Cui¹ ¹Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln., ²Department of Electrical Engineering, University of

Background

Due to the increasing demand for energy and environmental concerns related to emissions from fossil fuels, the U.S. Department of Energy launched the "Generation-IV Initiative" in 2000 to further advance nuclear energy systems design. In Generation-IV reactors, structural materials need to endure much higher neutron doses (>300 dpa), higher operation temperatures (> 200 °C over an 80 year lifetime), and extremely corrosive coolants (such as supercritical water, gas, sodium, or Pb).

Oxide-dispersion-strengthened

Microstructures of Laser-Peened Stainless Steels

Improved Irradiation Resistance by LSP

Interaction of laser-driven shock waves with **austenitic** stainless steels results in dislocation networks, stacking faults, and deformation twins in the near surface, suggest that significant plastic deformation occurred in stainless steels during the LSP process. When the pressure of shock waves exceed the yield strength of an alloy, it will experience an extremely high strain-rate $(10^6-10^8 \text{ s}^{-1})$ during a short period of time and be dynamically yielded.

Nebraska–Lincoln, ³Nebraska Center for Energy Sciences Research, University of Nebraska–Lincoln

The irradiation tolerance of materials can be improved by the introduction of nanoscale interfaces as sinks to irradiation defects. In laser peened ODS steels, we envision that a high density of sinks for defect annihilation is present in the microstructure, which include a large number of dislocation networks, twin boundaries and grain boundaries generated by laser peening, in addition to the oxideparticle/matrix interfaces.

During 1 MeV Kr⁺ irradiation, *in situ* TEM irradiation experiments at Argonne National Laboratory observed that twin boundaries and dislocations in laser-peened 304 steels can serve as effective sinks for the annihilation of irradiation defects. As a result, the irradiation defect density in laserpeened 304 steels is just 15~25% of that in untreated samples.

(ODS) alloys are promising candidate structure materials for Generation-IV reactors. In their microstructure, dispersions of Y-Ti-O

Interference5 nmdispersions of Y-Ti-OFigure 1. High-resolutionnanoparticles (< 10 nm) in the</td>TEM image of the ODS 310stainless steel matrix (Figure 1)austenitic stainless steel usedresult in superior resistance tonanoparticles ("P") are labeled.creep and irradiation damage at elevated temperatures.

However, ODS **austenitic** alloys, such as ODS 304, 310 and 316 stainless steels, are susceptible to intergranular stress corrosion cracking (SCC) in primary and supercritical water environments. SCC is the growth of cracks due to the simultaneous action of a tensile stress and a corrosive environment. Material degradation due to SCC costs the U.S. nuclear industry over \$10 billion in the last 30 years.

The goal of this research is to develop new types of ODS **austenitic** alloys that are more resistant to SCC and irradiation damage using laser shock peening (LSP).

Figure 2. Typical transmission electron microscopy (TEM) images of near-surface microstructures of 304 austenitic stainless steel treated by laser shock peening (LSP): (a) deformation twins (arrowed); (b) stacking faults (arrowed); (3) high-density dislocations.

Prevention of SCC by LSP

LSP is a new approach that can prevent SCC of regular **austenitic** stainless steels, but the mechanisms are poorly understood.

Preliminary test data shows that:

(1) ODS **austenitic** alloys are susceptible to SCC. The crack growth rate in the ODS 304 stainless steels is slightly higher than the regular 304 steel (Figure 3).

(2) SCC occurred significantly in the original 304 stainless steel sample, which shows transgranular cracks (Figure 4a). In contrast, no apparent cracks are present in LSP-treated samples under the test environment

Figure 5. Annihilation of irradiation defects by a twin boundary in laser-peened 304 steel sample: (a) two defect clusters 1 and 2 (bright spots in circles) formed at 0s; (b) defect cluster 1 was annihilated at 4s; (c) defect cluster 2 was annihilated at 32s.

Figure 6. Evolution of irradiation defect density in untreated and laser-peened 304 steels (twin region) under 1 MeV Kr⁺ irradiation at room temperature

Laser Shock Peening (LSP)

In the LSP process, the rapid expansion of a plasma on the surface generates shock waves into the bulk material, which induce significant compressive residual stresses (0.1-1 GPa). The compressive stresses can extend to a depth of more than 1 mm from the surface. LSP is superior to the mechanical shot peening in the benefits of deeper penetration of compressive stress, shorter process time (7 ns for 1 laser pulse), precise control, accuracy, flexibility and no contamination.

Conclusions

1E19

Twins in Laser Peened 304 Steels

1E18

Irradiation Dose (ions/m²)

The LSP process has been used to prevent SCC and reduce the irradiation damage of ODS austenitic alloys in hightemperature water environment. These effects are related to a deep penetration of compressive residual stress, and the microstructural changes in the near surface by the interaction of laser-driven shock waves with the materials.

References

1. Sano, et al. Mater. Sci. Eng. A, 2006, 417, 334.

2. Cui, et al. Trans. Amer. Nucl. Soc., 2015, 112, 292.

Acknowledgement

We gratefully acknowledge the Energy Research Grants from the Nebraska Center for Energy Sciences Research.

