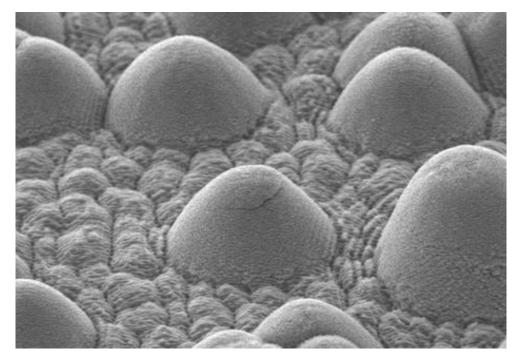
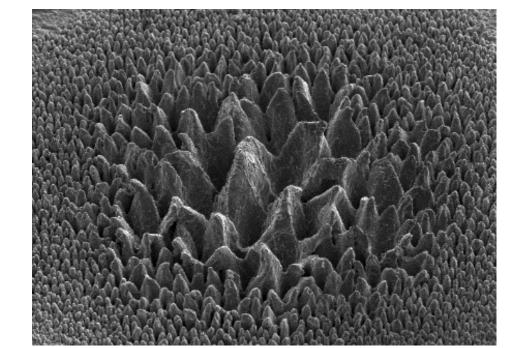


Formation Mechanisms of Mound-Like Multiscale Surface Structures by Femtosecond Laser Surface Processing on Amorphous & Polycrystalline Ni₆₀Nb₄₀

Edwin Peng¹, Alfred Tsubaki², Craig Zuhlke², Ryan Bell², Meiyu Wang¹, Dennis R. Alexander², George Gogos¹, & Jeffrey E. Shield¹

¹Department of Mechanical & Materials Engineering

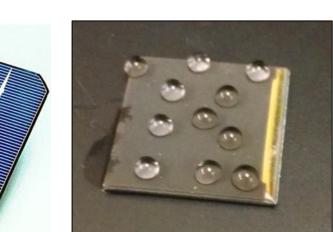

²Department of Electrical Engineering



Why FLSP?

Promising Surface Functionalization Technique

- Femtosecond Laser Surface Processing (FLSP)
- Utilize high power, femtosecond (10⁻¹⁵ s) laser pulses
- Produce self-organized, multiscale surface
- micro/nanostructures
- Diverse range of applicable substrates: semiconductors, metals, polymers, & composites

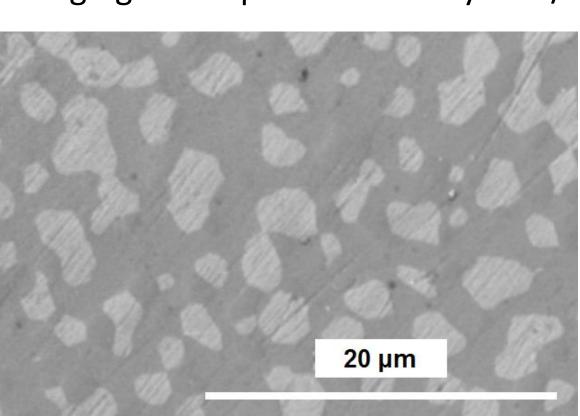


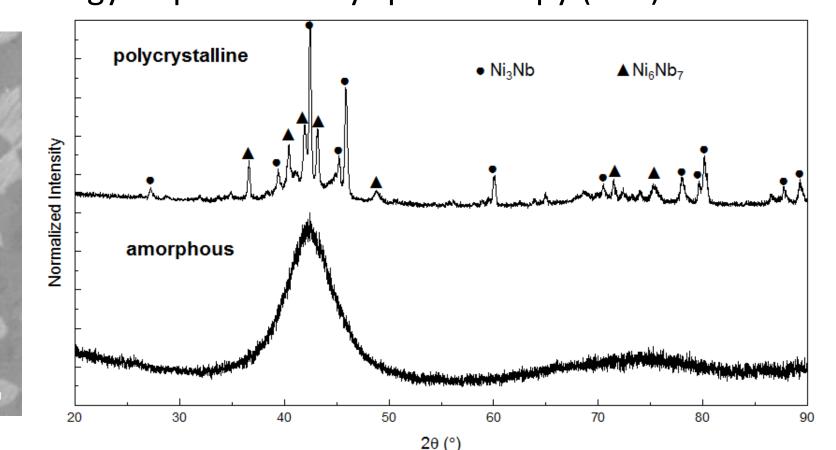
Properties & Applications

- Electrical & optical properties: solar cells, photodetectors
- Special wetting properties: selfcleaning surfaces, biomedical implants, heat transfer, drag reduction, anti-icing

Ni60Nb40 Substrate

Why Ni₆₀Nb₄₀?

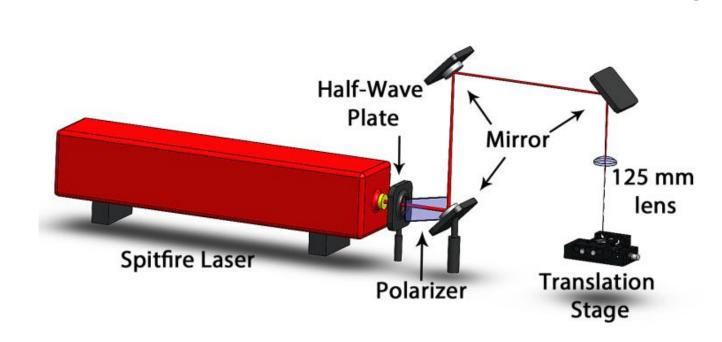

- Well-characterized, easy metallic glassforming alloy
- Previous "laser vitrification" demonstrated amorphous phase formation at heat-affected zone (HAZE)


Synthesis

- All synthesis in inert Ar atmosphere
- Arc melt pure Ni (99.995+%) & Nb (99.95+%) melt-spin into amorphous Ni₆₀Nb₄₀ ribbons
- (150 µm thick, 4 mm wide)
- annealed into polycrystalline Ni₆₀Nb₄₀ ribbons at 1373 K for 20 hrs

Characterization

- Bruker-AXS D8 X-Ray Diffractometer: phase identification w/ X-ray diffraction (XRD)
- FEI Helios NanoLab 660: microstructure imaging w/ion-induced secondary electron (ISE) imaging & compositional analysis w/ energy dispersive x-ray spectroscopy (EDS)



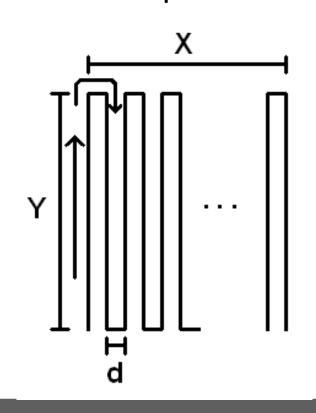
Left: ISE image of polycrystalline Ni₆₀Nb₄₀ microstructure w/ Ni₃Nb (white grains) & Ni₆Nb₇ (grey matrix) Right: XRD pattern of polycrystalline and amorphous Ni₆₀Nb₄₀

Ablation Threshold

Spectra-Physics Spitfire Laser System

- Ti:sapphire
- 80 fs, 1 mJ maximum pulse energy
- Melles Griot Nanomotion II 3-axis translation stage

Ablation Threshold Testing


- 100 50 fs pulses from 50 to 700 mW power
- Keyence VK-X: measure ablated area w/ 3D laser scanning confocal microscope (3DLSCM)
- No significant difference between ablation threshold of amorphous vs polycrystalline Ni₆₀Nb₄₀ substrates

	Amorphous	Polycrystalline
Spot Radius (µm)	$\textbf{104} \pm \textbf{2}$	102 ± 3
Threshold Fluence (J cm-2)	0.100 ± 0.004	0.102 ± 0.007

FLSP Mounds Formation

FLSP Raster

- 1x1 mm raster
- Gaussian profile
- BSG mounds
 - Laser fluence: 2.14 J cm⁻²
 - 625 laser pulses
 - Translation speed: 3 mm s⁻¹
 - Pitch: 15 μm
- ASG mounds
 - Laser fluence: 6.10 J cm⁻²
 - 175 laser pulses
 - Translation speed: 4.5 mm
 - Pitch: 15 μm

Objectives

BSG- vs ASG-Mound Formation Models

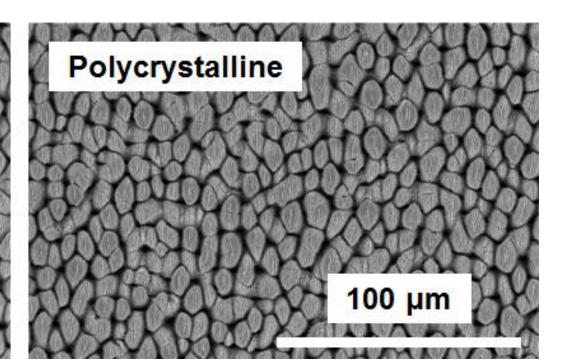
Why?

- Below-Surface Growth (BSG) & Above-Surface Growth (ASG) mounds on metals important for their potential applications
- BSG & ASG mound formation on Ni 200/201 previously studied using stop motion Scanning Electron Microscopy (SEM) imaging
- Need physical evidence of formation models

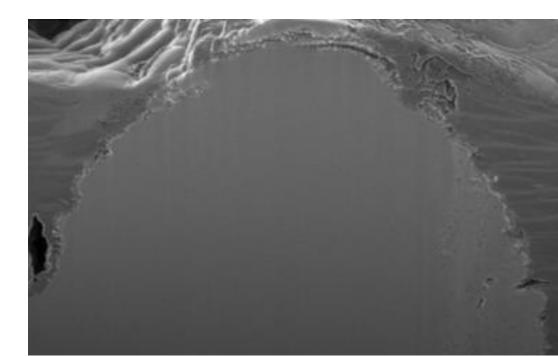
How?

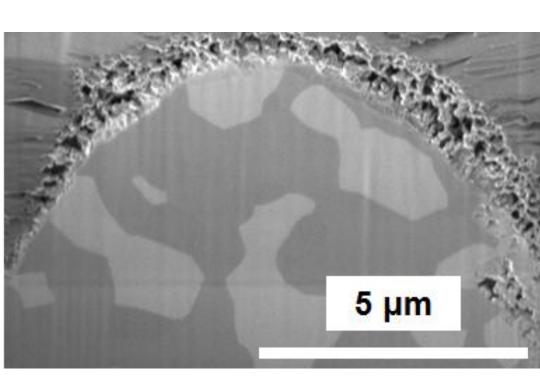
- Obtain evidence of mound growth processes by examining underlying microstructure
- Utilize dual beam SEM-Focused Ion Beam (FIB) instrument to cross section BSG & ASG mounds
- Easy glass-forming alloy as target substrate to visualize any rapid solidification processes

by FLSP on Ni 200/201 surface


Top Left: formation model of BSG mounds

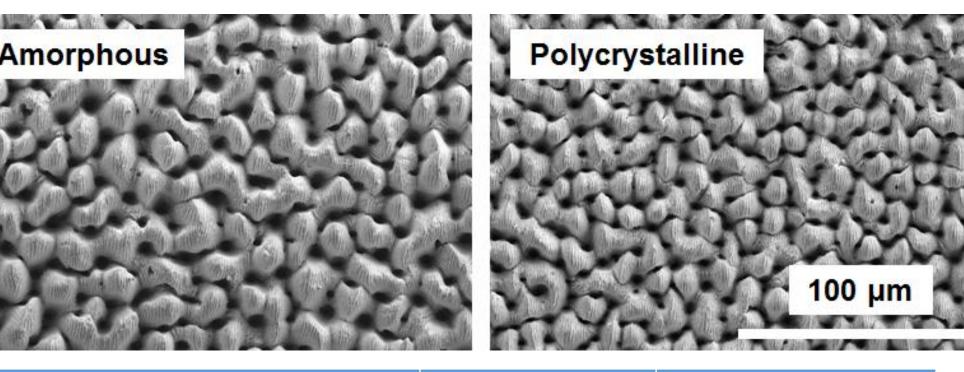
FLSP Mounds Results & Analysis

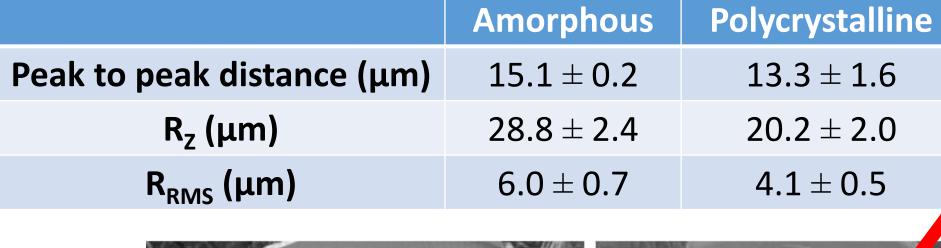

BSG Mounds

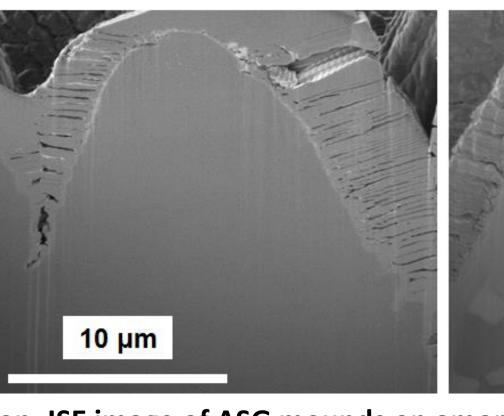

- BSG mounds produced on amorphous & polycrystalline substrates have same morphology (width & height)
- Cross section microstructure did change from original, pre-FLSP Ni₆₀Nb₄₀ substrates
- Evidence that primary BSG mound formation process was preferential valley ablation

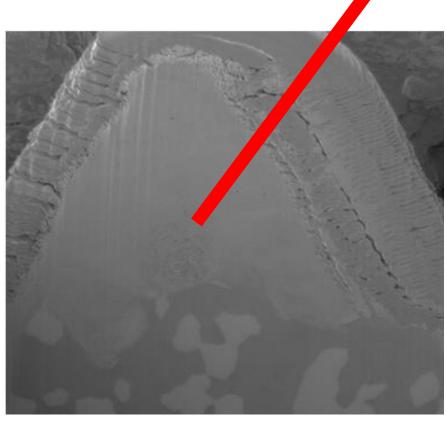
Amorphous

	Amorphous	Polycrystalline
Peak to peak distance (μm)	$\textbf{7.7} \pm \textbf{0.2}$	$\textbf{7.9} \pm \textbf{0.1}$
R _z (μm)	$\textbf{15.6} \pm \textbf{1.1}$	$\textbf{0.102} \pm \textbf{0.007}$
R _{RMS} (μm)	3.0 ± 0.2	2.8 ± 0.2

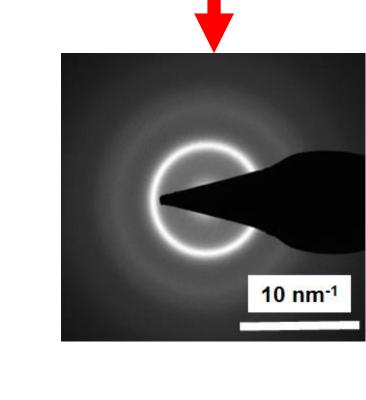




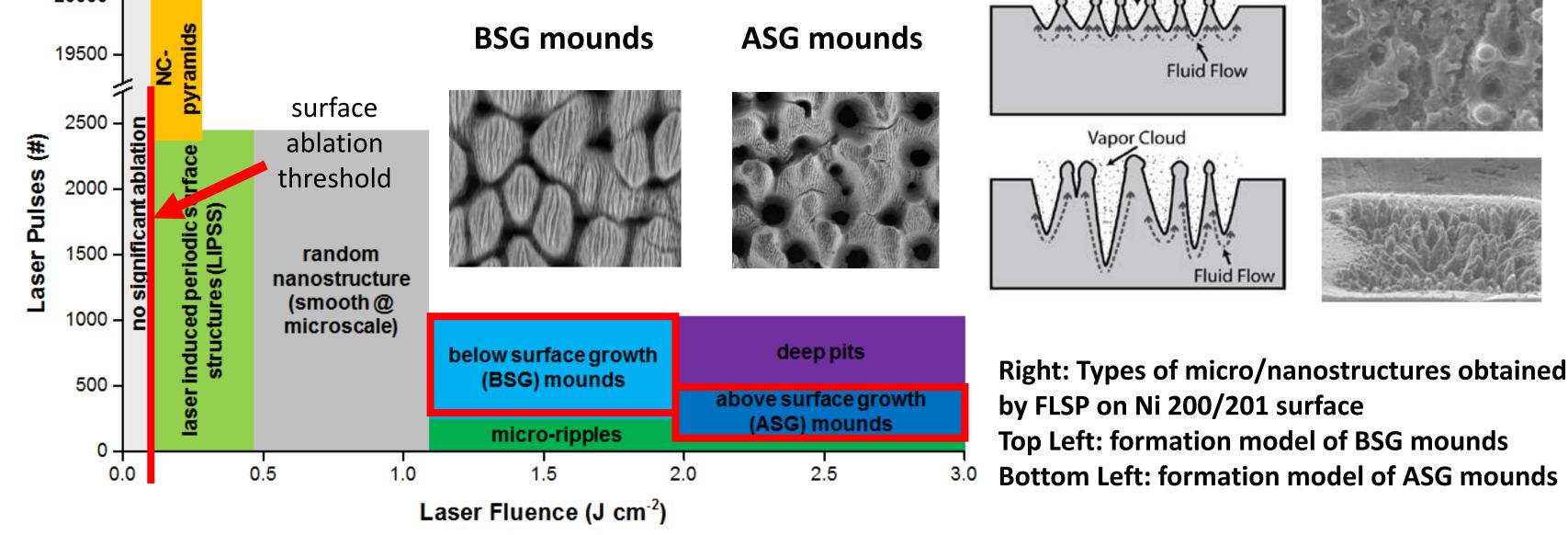

Top: ISE image of BSG mounds on amorphous & polycrystalline Ni₆₀Nb₄₀ substrates Bottom Left: ISE image of typical cross section BSG mound on amorphous Bottom Right: ISE image of typical cross section BSG mound on polycrystalline


ASG Mounds

- BSG mounds produced on amorphous substrates larger (width & height) than those on polycrystalline substrates
- Likely due to thicker fluid flow layer as amorphous substrate has lower thermal conductivity
- Cross section microstructure show additional, rapidly solidified fluid flow layer on top
- Confirm this fluid flow layer was amorphous $Ni_{60}Nb_{40}$ w/ selected area electron diffraction (SAED)



Acknowledgements


Top: ISE image of ASG mounds on amorphous & polycrystalline Ni₆₀Nb₄₀ substrates Bottom Left: ISE image of typical cross section ASG mound on amorphous Bottom Center: ISE image of typical cross section ASG mound on polycrystalline Right: TEM liftout sample & SAED pattern of the solidified fluid flow layer

• FLSP forms two distinct mound-like structures on metals

Below Surface Growth (BSG) Mounds

Mound-Like Multiscale Structures

- Mounds with peaks below original substrate surface
- Occur when laser fluence >> ablation threshold Growth theorized to be dominated by preferential valley ablation
- Above Surface Growth (ASG) Mounds
 - Mounds with peaks above original substrate surface
 - Occur at higher laser fluence, lower # laser pulses than **BSG-mounds**
 - Growth theorized to be dominated by preferential valley ablation and redeposition due to hydrodynamical fluid
 - May be some redeposition from cloud of ablated substrate material

Right: Types of micro/nanostructures obtained

References

- C. A. Zuhlke, T. P. Anderson and D. R. Alexander, *Opt Express*, 2013, **21**, 8460-8473.
- Journal of Heat and Mass Transfer, 2015, 82, 109-116.

- E. Peng, A. Tsubaki, C. A. Zuhlke, M. Wang, R. Bell, M. J. Lucis, T. P. Anderson, D. R. Alexander, G. Gogos and J. E. Shield, Applied Physics Letters, 2016, 108, 031602.
- C. M. Kruse, T. Anderson, C. Wilson, C. Zuhlke, D. Alexander, G. Gogos and S. Ndao, *International*
- 4. A. Y. Vorobyev and C. Guo, Laser & Photonics Reviews, 2013, 7, 385-407. G. Sepold and R. Becker, in Science and Technology of the Undercooled Melt, Springer, 1986, pp. 112-

Funding

- NASA EPSCoR Grant #NNX13AB17A
- Nebraska Research Initiative
- Nebraska Center for Energy Sciences Research (NCESR)

Research Facilities

- Nebraska Center for Materials and
- Nanoscience (NCMN) NanoEngineering Research Facility (NERF)