

Stochastic Wind Power Bidding in the Southwest Power Pool Market Dongliang Xiao (Advisor: Dr. Wei Qiao) Power and Energy Systems Laboratory, Department of Electrical and Computer Engineering

Introduction

- > Goal: Develop a stochastic optimization-based dynamic operation model to generate the optimal bidding strategies for wind power producers to participate in the Southwest Power Pool's (SPP's) electricity market.
- \succ The wind power producer is considered as a price taker in the market.
- > The model generates day-ahead optimal bidding curves for the wind power units while considering their operations in the real-time market.
- \succ Uncertain parameters, including day-ahead wind power production, day-ahead prices, and realtime prices, are modeled using prediction-based scenario generation and reduction methods.
- Risk management is considered in the model to manage the risks associated with uncertainties.

- Market participants submit their day-ahead offers and bids from 00:00 to 09:30 AM every day. The market operator clears
- day-ahead prices from 09: 30 AM to 14:00 PM.

Scenario Generation

> ARIMA prediction results

of the 24-hour day-ahead

electricity prices on June

, 2015.

Scenarios generated for 24hour forecast errors.

- Three random parameters in the model Day-ahead price: 5 scenarios Real-time price: 5 scenarios Wind power production: 5 scenarios
- $> 5 \times 5 \times 5 \implies 125$ scenarios

Scenario numb

Day-ahead price(

Real-time price(

Wind power production(MV Probability

Market Framework and Current Operation Strategy

The offering price of wind power producer in the dayahead market is a negative value per MW. This ensures that all the bid wind power capacity will be accepted in the day-ahead market.

Current bidding strategy

$$\pi_W = \sum_{t=1}^{N_T} \times [\lambda_t^D W_t^D]$$

- SPP operator.
- capacity bid in the day-ahead the real-time market.

Scenario Reduction

Scenarios of 24-hour day-ahead prices on June 1, 2015.

er	1	2	3	•••	124	125
(\$)	11.604	11.604	11.604	•••	17.64	17.64
(\$)	0.957	0.957	0.957	•••	25.523	25.523
N)	46.288	51.133	57.681	•••	65.703	69.887
	0.0000219	0.0000267	0.000431	•••	0.00621	0.00474

Results and Analysis

This work was supported in part by the U.S. National Science Foundation under CAREER Award ECCS-0954938 and the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research.

The University of Nebraska-Lincoln is an equal opportunity educator and employer.

 $\int_{t}^{D} d_{t} + \lambda_{t}^{r} \Delta_{tw}^{+} - \lambda_{t}^{r} \Delta_{tw}^{-}$

 \succ The capacity bid in the day-ahead market is the same as the wind power generation forecasted by the

> If the actual wind power generation on the next day is different from the market, the deviation should be traded in (sold in or purchase from)

proposed model.

Proposed Operation Strategy

Proposed bidding strategy

$$\begin{split} \underset{W_{tw}^{D},\zeta,\eta_{w}}{\text{Max}} \pi_{W} &= \sum_{w=1}^{N_{\Omega}} pr_{w} \sum_{t=1}^{N_{T}} \times [\lambda_{tw}^{D} W_{tw}^{D} d_{t} + \lambda_{tw}^{r} \Delta_{tw}^{+} - \lambda_{tw}^{r} \Delta_{tw}^{r} - \lambda_{tw}^{r} - \lambda_{tw}^{$$

Conclusion

- > A dynamic operation model for price-taker wind power producers to participate in the SPP electricity market has been developed based on the stochastic optimization principle.
- Day-ahead bidding curves have been generated using the model for wind power producers to gain the maximum profits in the SPP Market.
- Case studies have been performed for a wind power producer using real data obtained from the SPP market. Results show that the proposed model enabled the wind power producer to gain over 6% more profits in the SPP market than the current operation strategy.
- Additional information (e.g., maintenance) schedule and outage) and additional resources (e.g., energy storage if available) can help better manage uncertain risks in the real-time market.

Lincoln | ENERGY SCIENCES RESEARCH

 $\Delta_{tw}^{-}] \leq \eta_{w}, \quad \forall w$

 $\left[\frac{1}{tw}\right]$

