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Motivation Pool Boiling Heat Transfer Data with Secondary Boiling Effects

Femtosecond Laser Surface Processing
(FLSP) has the ability to functionalize
metallic surfaces with self-organized
micro/nanostructures capable of the

Expe rimental Setup * The ﬁ)cool boiling experimental setup is used to measure the heat flux between a surface and liquid
interface
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A new phenomenon referred to as secondary boiling effects has been observed
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e . Secondary boiling effects refers to a unique “hook e Secondary boiling effects also result in a hysteresis in the boiling
e Increase effective Heat s | T back” in the boiling curve near the CHF curve.
Transfer Coefficient Well Superheat . This hook back is very beneficial because it
corresponds to a significant enhancement in the heat  This is displayed when the heat flux is increased and then decreased.
Vapor Bubble —— transfer coefficient The decreasing curve displays a completely different HTC
Peak-to-Valley R::;La:eess Surface Area Biot * Using the geometric characterization of each surface it can be seen
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Nano and Microstructure Fabrication Secondary Boiling Effects Mechanism
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e Raster Path On Sample * The possibility of secondary boiling effects can be A wide range of a few PulfgOtTw)
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« Nanoparticle redeposition and surface have non uniform temperatures e present —
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fluid flow create micro and nano-
structures.

* Only the FLSP surfaces with Biot numbers above
.1 displayed secondary boiling effects
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* Avariety of structures can be created * This results in a shift in nucleation dynamic ,_ - [} microstructure height)
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e Structures of
interests for heat
transfer include:

increases of the microstructure

e Nucleation also becomes more dense at the
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* Pyramids activation of smaller nucleation cavities
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