

Introduction

- Organic carbonates constitutes a class of compounds synthesized from CO_2 , a greenhouse gas and small bio-derived alcohols
- They are used in the production of polycarbonates, as organic solvents, fuel additives, green reagents and electrolytes in lithium ion batteries
- They are typically analyzed by destructive methods such as gas chromatography rendering them useless post analysis

Objective

- Obtain limits of detection and quantification of standard solutions of six organic carbonates by high performance liquid chromatography (HPLC)
- Study the effect of column temperature and mobile phase flow rate on the elution of DMC and EC
- Identify the organic carbonate components of a rechargeable lithium ion battery

Ion-moderated partition chromatography

- A cation-exchange column with an exchangeable hydrogen ion (H⁺) was used for the HPLC analysis in this work
- Simple, isocratic elution with 5mM sulfuric acid was conducted
- This column separates analytes by ion moderated partition technique that includes multiple modes of interaction between the analyte and the column

• This column is commonly used for biomass hydrosylate, fermentation broth and biological fluid analysis

Method Development for Separating Organic Carbonates Using Ion-Moderated Partition High **Performance Liquid Chromatography** Anuja Bhalkikar, Chris M. Marin and Chin Li Cheung* Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588; *Email: ccheung2@unl.edu

Limits of detection and quantification

Carbonate	Linear Regression	R ²	Limit of Detection (ppm)	Limit of Quantification (ppm)
DMC	y = 510,994.4x - 910.3	0.99994	7.3	24.3
EMC	y = 624,772.9x - 3853.2	0.99993	14.6	48.5
DEC	y = 690,706.5x-7,456.2	0.99912	30.8	102.7
EC	y = 700,865.9x - 1209.4	0.99999	7.5	25
PC	y = 912,036.5x - 2343.8	0.99992	8.2	27.2
GC	y = 1,114,379.2x - 1,987.6	0.99997	3.8	12.7

• Five standard solutions ranging from 50-15,000 ppm used to obtain calibration curves • Linear relationship found for all the evaluated carbonates with $R^2 > 0.9990$

HPLC analysis

- 100mM solution mixture comprising of all six organic carbonates was analyzed by HPLC
- 35°C, mobile phase flow rate: 0.6mL.min⁻¹, injection volume: 10µL
- All carbonates except DMC and EC were baseline resolved
- Common impurity such as glycerol was also detected

Effect of temperature on the elution of DMC & EC

- resolved them

• HPLC conditions - Column temperature: 55°C, Refractive index (RI) detector temperature:

- Effect of change in column temperature on the elution of DMC and EC was evaluated at 55° C, 45°C and 35°C
- Even at 35^oC, DMC and EC could not be baseline
- Lowering the column temperature to 35^oC
 - improved the capacity factor (*k*) for EC while that for DMC remained unchanged thus separating

Cyclic carbonates were hypothesized to elute via reverse phase mechanism while acyclic carbonates were separated by size exclusion mechanism

Effect of mobile phase flow rate on the elution of DMC & EC

- Effect of the flow elution of DMC evaluated at 0.6.
- The peak resolut drastically impro decline in the flo capacity factor (altered

Identification of organic carbonates in a lithium ion battery (LIB)

- to be 1:5:1 v/v

w rate on the & EC was , 0.3 & 0.2mL/min tion (R_)	Flow Rate (mL.min ⁻¹)	Peak Resolution (R _s)
oved with a	0.6	0.93
ow rate but the	0.3	1.15
(k) was marginally	0.2	1.22

Retention time (min.)

• Majority of electrolytes in a LIB contain LiPF_6 in a solvent mixture composed of cyclic & acyclic carbonates

• The ratio of DMC:EC:PC in anode electrolyte wash was found

• The ratio of EC:PC in cathode electrolyte wash was found to be 4:1 v/v; the amount of DMC was below detection limits

Conclusion

• A novel, sensitive ion-moderated partition HPLC method was developed for organic carbonate analysis

• The method used an ion-exchange column with an isocratic mobile phase and a non-destructive detector

• This method was found to be applicable in the characterization of a commercial lithium ion battery

Acknowledgement

NEBRASKA CENTER FOR Lincoln | ENERGY SCIENCES RESEARCH

