lncoln NEBRASKA CENTER FOR ENERGY SCIENCES RESEARCH

Bogiang Tu, Nishikant Wase, Paul N. Black, Concetta C. DiRusso Department of Biochemistry, University of Nebraska, 1901 Vine Street, Lincoln, NE 68588-0664 Email: btu2@unl.edu

Abstract

A large scale in vivo high throughput screen was performed to identify small molecules that induce lipid accumulation in the model organism *Chlamydomonas reinhardtii*. Three compounds were selected for gene expression analysis using next-generation sequencing technique. Samples were collected after 72h of treatment with 3 biological replicates for each compound. Our previous work has shown that compound treatment can induce lipid droplet accumulation by up to 6 fold and does not severely compromise growth. mRNA was isolated and sequenced on Illumina Hi-seq 2000. The sequencing reads were mapped to the genome using Tophat2 and assembled as transcriptome using Cufflinks. Out of 14520 successfully assembled genes, 789, 908 and 2079 genes were differentially expressed when treated with compound 30, 42 and 84, respectively, with expression patterns different among treatment and control. Pathway analysis revealed significant metabolic shift under compound treatment. Changes TCA cycle possibly shift central energy metabolism towards lipid biosynthesis related pathways. Down-regulation of anabolic pathway and upregulation of ER protein processing/degradation suggests the majority of TAG is not synthesized *de novo*, but via recycling of cellular components. Up-regulation of nitrogen assimilation suggests that increased nitrogen intake may reverse the suppressive effects of compound on growth.

Background

Microalgae, a very large and diverse group of photosynthetic organisms, have attracted global attention as a renewable energy feedstock. Previous studies conclude that nutrient stresses, especially nitrogen starvation, induce significant lipid accumulation that might be used for the production of biofuels. However, nitrogen starvation also causes in degradation of the photosynthetic apparatus, severely limiting the rate of growth. Additionally as a lipid induction method, nitrogen limitation is impractical in large-scale production due to technical and financial drawbacks. This led us to develop a high throughput screening (HTS) system, which we have employed to identify synthetic chemical compounds that increase lipid production without severely compromising cell growth or photosynthetic capacity.

In recent years, RNA next-generation sequencing (RNA-seq) has been increasingly used in transcriptome studies for differential gene expression analysis. Compared to traditional microarray techniques, RNA-seq provides higher accuracy and larger dynamic range of the transcript levels and does not require premade microarray chips, which are not readily available for algae. Several well-accepted software tools adopted by the bioinformatics community for optimized pipelines were used in this study for computationally intensive data processing.

In this study, we focused on the transcriptional response of green algae Chlamydomonas reinhardtii on the level of pathway shifts in an attempt to elucidate the mechanisms of action of these lipid-inducing small molecules.

Study Design 5 µM compound RNA isolation and treatment in liquid library prep (Truseq culture for 72h V3) Ilumina Hi-seq 2000 Mapping reads to sequencing (25 genome with million 100bp single Tophat2 / Bowtie2 reads / sample) Transcriptome Differential assembly with expression analysis cufflinks from with cuffdiff mapped reads Pathway annotation Gene Set and other statistical **Enrichment Analysis** analyses

Transcriptional Response of Chlamydomonas reinhardtii Treated with Lipidinducing Small Molecules

6. Expression of selected genes in lipid metabolism DGTT DGTT1 $G3P \longrightarrow LPA \longrightarrow PA \longrightarrow DAG \longrightarrow TAG$ NCP NC 30P 30° N2P N2° 84P 84° (A) TAG biosynthesis pathway: PLSB: glycerol-3-phosphate acyltransferase, DGTT: diacylglycerol acyltransferase, PDAT: phospholipid:diacylglycero acyltransferase. (B) Expression of individual genes. FPKM: **Figure 6. Differential** fragments per kilobase of transcript expression of several genes per million mapped reads. (C) comparison between qPCR and related to TAG biosynthesis. **RNA-seq results** (indicated by "p" and "s", respectively) Treatmen

Conclusions

Each compound induced lipid accumulation up to 6-fold higher than control

No compound severely compromised growth, whereas nitrogen deprivation did ♦ Out of 14520 successfully assembled genes, 789, 908 and 2079 genes were differentially expressed when treated with compound 30, 42 and 84, respectively, ✤ Changes TCA cycle possibly shift central energy metabolism towards lipid biosynthesis related pathways

✤ .Down-regulation of anabolic pathway and up-regulation of ER protein processing/degradation suggests the majority of TAG is not synthesized de novo, but via recycling of cellular components

✤ Up-regulation of nitrogen assimilation suggests that increased nitrogen intake may reverse the suppressive effects of compound on growth

Compound treatment may be useful for identifying components and mechanisms that regulate lipid synthesis and can be utilized for biofuel production

Future Directions

* Identified metabolic shifts on transcription level indicate that proteomic and metabolomics analyses are warranted

Confirm the observed alterations in gene expression and their metabolic effects using qPCR, western blots and enzyme assays

* Perform bioinformatic analysis integrated with particle simulation to identify the direct targets of these compounds and their mechanisms of action

✤ Identify practical approaches to rescue the growth of algae while producing lipid

References

Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics*, 25(9), 1105-1111.

Trapnell, C., Williams, ... & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature biotechnology, 28(5), 511-515.

Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., ... & Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 102(43), 15545-15550.

Luo, W., & Brouwer, C. (2013). Pathview: an R/Bioconductor package for pathway-based data integration and visualization. *Bioinformatics*, 29(14), 1830-1831.

Thanks are due to FATTT Lab members who have contributed intellectual and technical assistance to this project. This work was supported by Nebraska NSF EPSCoR Award: 1004094 and the Nebraska Center for Energy Sciences Research.