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¢ Up-regulation of nitrogen assimilation suggests that increased nitrogen intake
may reverse the suppressive effects of compound on growth

A large scale in vivo high throughput screen was performed to identify small molecules that . . L . . .
induce lipid accumulation in the model organism Chlamydomonas reinhardtii. Three 1. Growth and lipid accumulation 4. Transcriptional change in major anabolic pathways 6. Expression of selected genes in lipid metabolism
compounds were selected for gene expression analysis using next-generation sequencing
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global attention as a renewable energy feedstock. Previous studies conclude that nutrient Cells in mid-log phase were washed 2 x with TAP media. Compounds were added to a final Figure 5B. (A) Transcriptional change in Calvin cycle. (B) Transcriptional change in 150- PDAT: phOSphOlipid.diacylgl;cerol
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3. Transcriptional change in other selected pathways
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