

Doped Hole Transport Layer for Efficiency Enhancement in Planar Heterojunction Organolead Trihalide Perovskite Solar Cells Qi Wang, Cheng Bi, Jinsong Huang\*

Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln

#### **Research Motivation**





Flexible <sup>[4]</sup>

**Device Structure and Film Morphology** 



### **Performance optimization**



Color tunable <sup>[3]</sup>



Large scale and semitransparent <sup>[1]</sup>







#### Wavelength (nm)

F4-TCNQ doping increase device

efficiency, especially fill factor

Device with PTAA doped by 1 wt%
F4-TCNQ achieved a PCE of 17.5 %

# Increasing FF by Doping



#### Conclusions

High device PCE of 17.5 % was achieved by doping HTL

Doping was found increasing device FF by reducing series resistance

Pointing out an new direction of further increasing the efficiency above 20%

#### Bibliography



## **Thickness Dependence Performance**



1. M. Z. Liu, et. al, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 2013

2. http://www.nrel.gov/

- 3. http://www.cnn.com/2014/09/18/tech/innovation/solar-cells-of-the-future/
- 4. P. Docampo, et.al, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nature communication, 4, 2761, 2013
- 5. D. Zhao, et. al, High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer,

Adv. Energy Mater. 2014, 1401855

#### Acknowledgements

The authors thank the financial support by Sun Shot Program of the US Department of Energy (Energy Efficiency and Renewable Energy) and Nebraska Center for Energy Sciences Research



