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Abstract Introduction
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- - - ethanosarcina barkeri (M. bar J
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which they incorporate into branched alkane lipids that constitute P . co,_| Mevalonate-5-pyrophospate
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in production of polyisoprene rubber (the major component of _ sopentenyl-PP
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petroleum-derived isoprene, but can be extracted in higher yield l rubber Squalene <———— FaMesyiPP e
and purity. This technology will be developed in two objectives: SIS block Adhesives 150,000  $530 M /
(Objective 1) quantify conversion of CO, and carbonates to ; e s
methane and isoprene and (Objective 2) engineer vlr 3 i g eSO/ Hl1OM Ubiquinones | Prenylated proteins
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augment natural isoprene production in new and existing Eﬁ‘:x?fc CH, | = RS AR Epoxy hardeners
methane-producing microbial isolates or consortia. This c | Pilboc il = T - = Total 1300000 $43B
technology will result in an inexpensive, economically feasible l l Figure 4: Theresa Street Wastewater Treatment  Figure 3: Gerald Gentleman Station. Located in i Sl
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growth.
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