Capturing and Conversion of CO₂ with Chemical-Looping Technology Mahdi Alhajji, Yaşar Demirel

Methodology

Chemical-looping Technology

 Power production and CO₂ capture are intrinsically combined by the use of an oxygen carrier (OC) that transfers oxygen from the air to the fuel preventing direct contact between them.

Hydrothermal Conversion of CO₂ to HCOOH

• Very effective method as the high temperature properties of water are different from the water at ambient conditions

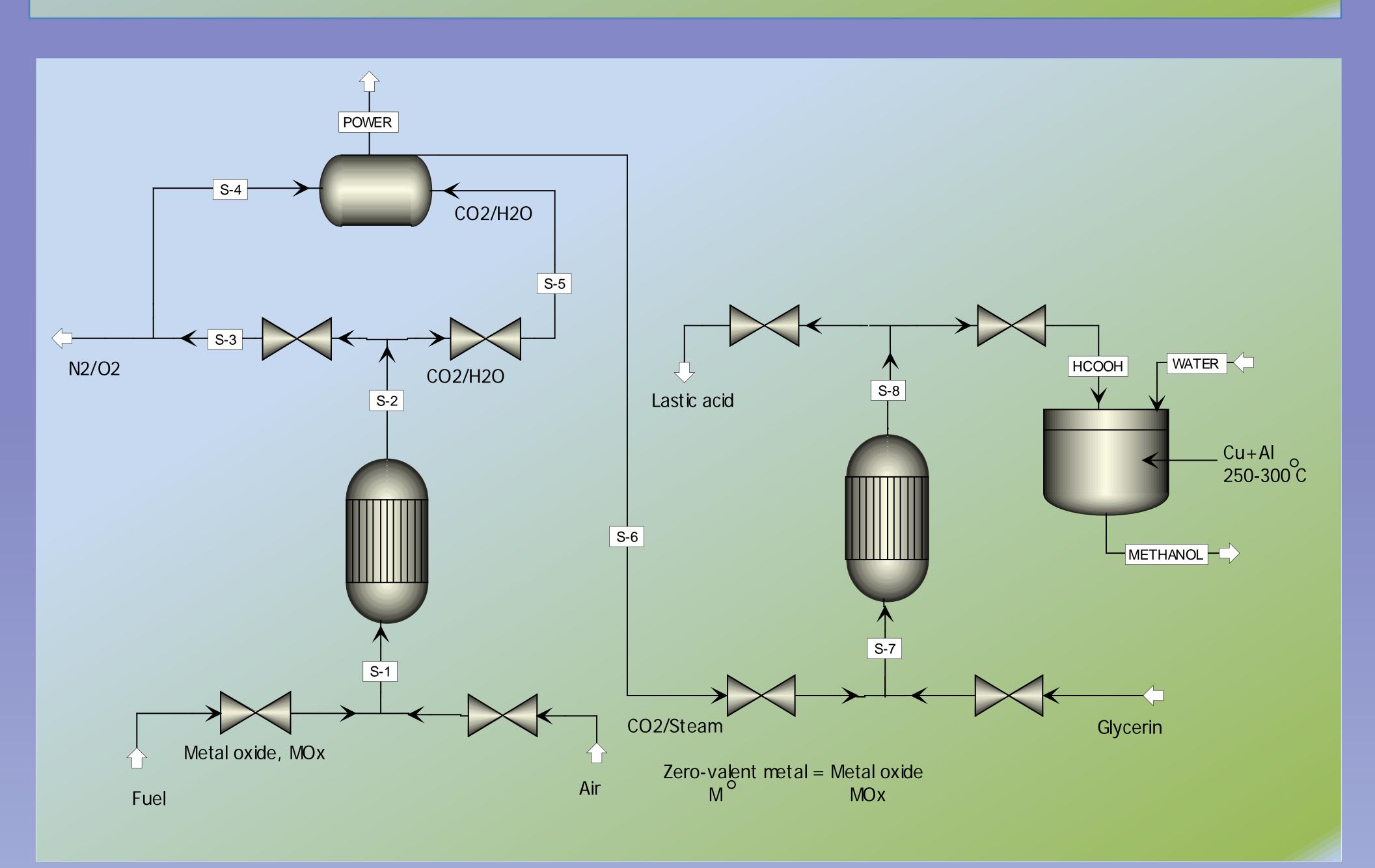
Hydrothermal Conversion of **HCOOH to CH₃OH**

• Formic acid can be converted to methanol (CH₃OH) in a packed bed reactor, by using high temperature water as a source of H_2 .

Reactions

- Chemical Looping Combustion. $C_nH_{2n} + MeO \rightarrow Me + CO_2 + H_2O$ $Me + O_2 \rightarrow MeO$
- Hydrothermal Conversion of Carbon dioxide to Formic Acid.
- $M^0 + CO_2 + H_2O \rightarrow MO_x + HCOOH$ $MO_x + C_aH_bO_c \rightarrow M^0 + C_aH_{b-2c}O_c + xH_2O$
- Hydrothermal Conversion of Formic Acid to Methanol.
 - $HCOOH + H_2 \rightarrow CH_3OH + H_2O$

Acknowledgment


The author acknowledges the financial support (26-1217-0001-707) by the Nebraska Center for Energy Sciences Research (NCESR) and Electric Power Research Institute (EPRI).

Department of Chemical and Biomolecular Engineering University of Nebraska-Lincoln; <u>Alhajjim@huskers.unl.edu</u>, <u>ydemirel2@unl.edu</u>

Objectives

Using the packed bad chemical-looping technology operated at hydrothermal conditions CO₂ can be converted to formic acid or directly to methanol using various metals with:

- The lowest possible energy and economic costs for the fuel/biomass conversion systems without adverse environmental/societal consequences
- A reduction of carbon intensity from energy conversion and use,
- Interactions of systems and patterns at the local/regional scale with systems/patterns at the global scale.

Chemical-looping processes combining combustion of a fuel at the first stage and hydrothermal process of converting CO₂ to methanol at the second stage.

Process Description

Under hydrothermal conditions, using Cu (12 mmol) as catalyst in the presence of Al (4.4 mmol) was about 30.4%. The reaction takes place at 300 °C with a reaction time of 9 hours. Methanol may be formed by the synthesis of CO₂ and H₂ from the decomposition of formic acid. This shows that there is possibility of converting CO₂ to methanol directly starting with CO_2 in a packed bed chemical-looping system. By combining the chemical-looping combustion of a fuel and the hydrothermal process of converting CO₂ to formic acid, we will have a process converting a fuel to methanol

- Over 90% CO₂ captures at lowest cost Separation of water is based on cooling/ compression of the product gas containing mainly CO₂ and water at process pressure No or very little thermal NO_x production because of low temperature Compatible with sulfur and mercury capture technologies Heavy metals may stay with the ash Higher thermodynamic efficiency No hot spots under fluidized bed technology Disadvantages

- Dual reactors operation
- Oxygen carrier circulation between the reactors
- Solids handling
- Chemical-looping technology may help improve combustion, reforming, and gasification of various fuels with the ability of capturing and converting CO₂ to valuable chemicals and fuels.
- At hydrothermal conditions CO₂ can be
- It is possible to convert CO₂ to formic acid by using zero-valent metals in the first process, while the methanol is synthesized from formic acid in the second stage using various metals.

References

2003*,* **42***,* 6518-6530. 15-40.

Advantages

Conclusion

- converted to formic acid or directly to
- methanol using various metals.

Jin, F.; Gao, Y.; Jin, Zhang, Y.; Cao, J.; Wei, Z.; Smith Jr, R.L. High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles, *Energy Environ. Sci*. 2011 **4**, 881-884.

S.AJin, F; Enomoto, H. Hydrothermal conversion of biomass into value-added products: Technology that mimics nature, *Bioresource* 2009, 4, 704-713. Liu, X.M.; Lu, G.Q.; Yan, Z.F.; Beltramini, J. Recent advances in catalyst for methanol synthesis via hydrogenation of CO and CO2. Ind. Eng. Chem. Res.

Moghtaderi, B., Review of the recent chemical looping process developments for novel energy and fuel applications, *Energy Fuels*, 2012, 26,